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Welcome

We are happy to welcome the speakers and delegates of the 23rd Irish Machine Vision and Image Processing
Conference, IMVIP 2021! This year the conference is hosted at Dublin City University over two days, Septem-
ber 2-3.

The IMVIP Conference is Ireland’s primary meeting for those researching in the fields of machine vision and
image processing. The conference has been running since 1997 and provides a forum for the exchange of ideas
and the presentation of research conducted both in Ireland and worldwide. IMVIP is a single-track conference
consisting of high quality previously unpublished contributed papers focusing on both theoretical research and
practical experiences in all areas. IMVIP is run in association with the Irish Pattern Recognition and Classifica-
tion Society (iprcs.org), a member organisation of the International Association for Pattern Recognition (IAPR)
and the International Federation of Classification Societies (IFCS).

This is the fourth time that DCU hosts IMVIP conference after 1999, 2006 and 2011 editions which were held
at DCU in the past. We are delighted to be able to return to on-site format, after the fully online version of
2020. More specifically, this year we are offering a mixed format where the majority of the participants present
on-site and some participate remotely. The technical program this year consists of 12 full and 4 short papers,
all of which are delivered as oral presentations. We are delighted to have two keynote speakers this year: Prof.
Xavier Giro-i-Nieto from Universitat Politecnica de Catalunya (UPC), Barcelona, and Prof. Noel O’Connor
from Dublin City University.

We thank sincerely the members of the Programme Committee for generously giving their time, effort and
expertise in reviewing the submissions. We wish all the attendees a pleasant and engaging experience with the
mixed delivery format at IMVIP 2021.

Vladimir A. Krylov, Kevin McGuinness
Dublin City University

September 2021
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www.dcu.ie
https://imvipconference.github.io/


Programme Chairs

Vladimir A. Krylov, Dublin City University
Kevin McGuinness, Dublin City University

Programme Committee

Martin Alain, Trinity College Dublin
Vincent Andrearczyk, HES-SO The University of Applied Sciences and Arts of Western Switzerland
Donald Bailey, Massey University, New Zealand
Francesco Bianconi, Università degli Studi di Perugia, Italy
Kathy Clawson, University of Sunderland, UK
Sonya Coleman, Ulster University
Joan Condell, Ulster University
David Corrigan, Huawei Technologies
Jane Courtney, Technological University, Dublin
Kathleen Curran, University College Dublin
Rozenn Dahyot, National University of Ireland, Maynooth
Kenneth Dawson-Howe, Trinity College Dublin
Catherine Deegan, Technological University, Dublin
Soumyabrata Dev, University College Dublin
Cem Direkoglu, Middle East Technical University, Cyprus
Antonio Fernández, Universidad de Vigo, Spain
Bob Fisher, University of Edinburgh, UK
Guillaume Gales, Foundry
Bryan Gardiner, Ulster University
Jonathan Horgan, Valeo Vision Systems
Ciaran Eising, Valeo Vision Systems, UL
Dermot Kerr, Ulster University
Yasuyo Kita, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Vladimir A. Krylov, Dublin City University
Suzanne Little, Dublin City University
Charles Markham, National University of Ireland, Maynooth
Sally Mcclean, Ulster University
John McDonald, National University of Ireland, Maynooth
Kevin McGuinness, Dublin City University
Paul McKevitt, Ulster University
Derek Molloy, Dublin City University
Sean Mullery, Institute of Technology Sligo
Omar Nibouche, Ulster University
Robert Sadleir, Dublin City University
Bryan Scotney, Ulster University
Shane Gilroy, IT Sligo
Matej Ulicny, Trinity College Dublin
David Vernon, Carnegie Mellon University Africa, Rwanda
Rudi Villing, National University of Ireland, Maynooth
Paul Whelan, VSG DCU
Reyer Zwiggelaar, Aberystwyth University, Wales

iii



Keynote Speakers

Prof. Xavier Giro-i-Nieto is an associate professor at the Univer-
sitat Politecnica de Catalunya (UPC) in Barcelona, member of the
Image Processing Group (GPI), Intelligent Data Science and Artifi-
cial Intelligence Research Center (IDEAI-UPC), Institute of Industrial
Robotics (IRI), and also a visiting researcher at Barcelona Supercom-
puting Center (BSC). He graduated in Telecommunications Engineer-
ing at ETSETB (UPC) in 2000, after completing his master thesis on
image compression at the Vrije Universiteit in Brussels (VUB) with
Prof. Peter Schelkens. After working one year in Sony Brussels, he
returned to UPC to obtain a PhD on computer vision, supervised by
Prof. Ferran Marqués and Prof. Shih-Fu Chang from the Digital Video
and MultiMedia laboratory at Columbia University, that he repeatedly
visited between 2008-2014. He regularly collaborates with the Insight
Center of Data Analytics at Dublin City University, and is a mem-
ber of the Governance Committee of the Science Foundation Ireland
Centre for Research Training in Machine Learning. He serves as as-
sociate editor at IEEE Transactions on Multimedia, and reviews for
top tier conferences in machine learning (NeurIPS, ICML), computer
vision (CVPR, ECCV, ICCV) and multimedia (ACMMM, ICMR).

Prof. Noel E. O’Connor is a Full Professor in the School of Elec-
tronic Engineering at Dublin City University (DCU) Ireland. He is
CEO of the Insight SFI Research Centre for Data Analytics, Ireland’s
largest SFI-funded research centre. He was previously Academic Di-
rector of DCU’s Research and Enterprise Hub on Information Tech-
nology and the Digital Society, with the responsibility of coordinating
multi-disciplinary ICT-related research across the university. The fo-
cus of his research is in multimedia content analysis, computer vision,
machine learning, information fusion and multi-modal analysis for ap-
plications in security/safety, autonomous vehicles, medical imaging,
IoT and smart cities, multimedia content-based retrieval, and envi-
ronmental monitoring. Since 1999 he has published over 400 peer-
reviewed publications, made 11 standards submissions, and filed 7
patents. He is an Area Editor for Signal Processing: Image Commu-
nication (Elsevier) and an Associate Editor for the Journal of Image
and Video Processing (Springer). He is a member of the ACM and
IEEE.
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Multi-Head Self-Attention via
Vision Transformer for Zero-Shot Learning

Faisal Alamri and Anjan Dutta

Department of Computer Science, University of Exeter, United Kingdom

Abstract

Zero-Shot Learning (ZSL) aims to recognise unseen object classes, which are not observed during the
training phase. The existing body of works on ZSL mostly relies on pretrained visual features and lacks
the explicit attribute localisation mechanism on images. In this work, we propose an attention-based model
in the problem settings of ZSL to learn attributes useful for unseen class recognition. Our method uses
an attention mechanism adapted from Vision Transformer to capture and learn discriminative attributes by
splitting images into small patches. We conduct experiments on three popular ZSL benchmarks (i.e., AWA2,
CUB and SUN) and set new state-of-the-art harmonic mean results on all the three datasets, which illustrate
the effectiveness of our proposed method.

Keywords: Generalised zero-shot learning, Inductive learning, Attention, Semantic embedding, Vision
Transformer.

1 Introduction
Vi

T-
ZS
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Red throat

Red breast
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...
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Figure 1: Our method embeds each attribute-
based feature with the semantic space. It learns
the visual discriminative features through multi-
head attention. Best to view in colour: colours in
the image correspond to the same-colour attribute
in the semantic space.

Relying on massive annotated datasets, significant progress
has been made on many visual recognition tasks, which is
mainly due to the widespread use of different deep learning
architectures [Ren et al., 2015, Dosovitskiy et al., 2021,
Khan et al., 2021]. Despite these advancements, recognis-
ing any arbitrary real-world object still remains a daunt-
ing challenge as it is unrealistic to label all the ex-
isting object classes on the earth. Zero-Shot Learn-
ing (ZSL) addresses this problem, requiring images from
the seen classes during the training, but has the ca-
pability of recognising unseen classes during the infer-
ence [Xian et al., 2019a, Xie et al., 2019, Xu et al., 2020,
Federici et al., 2020]. Here the central insight is that all the
existing categories share a common semantic space and the
task of ZSL is to learn a mapping from the imagery space to the semantic space with the help of side informa-
tion (attributes, word embeddings) [Xian et al., 2017, Mikolov et al., 2013, Pennington et al., 2014] available
with the seen classes during the training phase so that it can be used to predict the class information for the
unseen classes during the inference time.

Most of the existing ZSL methods [Xian et al., 2018, Schönfeld et al., 2019] depends on pretrained vi-
sual features and necessarily focus on learning a compatibility function between the visual features and se-
mantic attributes. Although modern neural network models encode local visual information and object parts
[Xie et al., 2019], they are not sufficient to solve the localisation issue in ZSL models. Some attempts have also
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been made by learning visual attention that focuses on some object parts [Zhu et al., 2019]. However, designing
a model that can exploit a stronger attention mechanism is relatively unexplored.

Therefore, to alleviate the above shortcomings of visual representations in ZSL models, in this paper, we
propose a Vision Transformer (ViT) [Dosovitskiy et al., 2021] based multi-head self-attention model for solv-
ing the ZSL task. Our main contribution is to introduce ViT for enhancing the visual feature localisation to
solve the zero-shot learning task. Without any object part-level annotation or detection, this is the first attempt
to introduce ViT into ZSL. As illustrated in Figure 1, our method maps the visual features of images to the
semantic space with the help of scaled dot-product of multi-head attention employed in ViT. We have also per-
formed detailed experimentation on three public datasets (i.e., AWA2, CUB and SUN) following Generalised
Zero-Shot Learning (GZSL) setting and achieved very encouraging results on all of them, including the new
state-of-the-art harmonic mean on all the datasets.

2 Related Work

Zero-Shot Learning: ZSL is employed to bridge the gap between seen and unseen classes using semantic
information, which is done by computing similarity function between visual features and previously learned
knowledge [Romera-Paredes and Torr, 2015]. Various approaches address the ZSL problem by learning prob-
abilistic attribute classifiers to predict class labels [Lampert et al., 2009, Norouzi et al., 2014] and by learning
linear [Frome et al., 2013, Akata et al., 2015, Akata et al., 2016], and non-linear [Xian et al., 2016] compatibil-
ity function associating image features and semantic information. Recently proposed generative models syn-
thesise visual features for the unseen classes [Xian et al., 2018, Schönfeld et al., 2019]. Although those models
achieve better performances compared to classical models, they rely on features of trained CNNs. Recently,
attention mechanism is adapted in ZSL to integrate discriminative local and global visual features. Among
them, S2GA [Yu et al., 2018] and AREN [Xie et al., 2019] use an attention-based network with two branches
to guide the visual features to generate discriminative regions of objects. SGMA [Zhu et al., 2019] also applies
attention to jointly learn global and local features from the whole image and multiple discovered object parts.
Very recently, APN [Xu et al., 2020] proposes to divide an object into eight groups and learns a set of attribute
prototypes, which further help the model to decorrelate the visual features. Partly inspired by the success of
attention-based models, in this paper, we propose to learn local and global features using multi-scaled-dot-
product self-attention via the Vision Transformer model, which to the best of our knowledge, is the first work
on ZSL involving Vision Transformer. In this model, we employ multi-head attention after splitting the image
into fixed-size patches so that it can attend to each patch to capture discriminative features among them and
generate a compact representation of the entire image.

Vision Transformer: Self-attention-based architectures, especially Transformer [Vaswani et al., 2017] has
shown major success for various Natural Language Processing (NLP) [Brown et al., 2020] as well as for Com-
puter Vision tasks [Alamri et al., 2021, Dosovitskiy et al., 2021]; the reader is referred to [Khan et al., 2021]
for further reading on Vision Transformer based literature. Specifically, CaiT [Touvron et al., 2021] intro-
duces deeper transformer networks, and Swin Transformer [Liu et al., 2021] proposes a hierarchical Trans-
former, where the representation is computed using self-attention via shifted windows. In addition, TNT
[Han et al., 2021] proposes transformer-backbone method modelling not only the patch-level features but also
the pixel-level representations. CrossViT [Chen et al., 2021] shows how dual-branch Transformer combining
different sized image patches produce stronger image features. Since the applicability of transformer-based
models is growing, we aim to expand and judge its capability for GZSL tasks; to the best of our knowledge,
this is still unexplored. Therefore, different from the existing works, we employ ViT to map the visual in-
formation to the semantic space, benefiting from the great performance of multi-head self-attention to learn
class-level attributes.
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Figure 2: ViT-ZSL Architecture. An image is split into small patches fed into the Transformer encoder after
attaching positional embeddings. During the training the output of the encoder is compared with the semantic
information of the corresponding image via MSE loss. At inference the encoder output is used to search for the
nearest class label.

3 Vision Transformer for Zero-shot Learning (ViT-ZSL)

We follow the inductive approach for training our model, i.e. during training, the model only has access to the
images and corresponding image/object attributes from the seen classes S = {x,y|x 2 X ,y 2 Ys}, where
x is an RGB image and y is the class-level attribute vector annotated with M different attributes, as provided
with the dataset. As depicted in Figure 2, a 224 ⇥ 224 image x 2 RH⇥W⇥C with resolution H ⇥ W and C

channels is fed into the model. The model follows ViT [Dosovitskiy et al., 2021] as closely as possible; hence
the image is divided into a sequence of N patches denoted as xp 2 RN⇥(P 2

.C), where N = H.W

P 2 . Each patch
with a resolution of P ⇥P is encoded into a patch embedding by a trainable 2D convolution layer (i.e., Conv2d
with kernel size=(16, 16) and stride=(16, 16)). Position embeddings are then attached to the patch embeddings
to preserve the relative positional information of the order of the sequence due to the lack of recurrence in
the Transformer. An extra learnable classification token (z00 = xclass) is appended at the beginning of the
sequence to encode the global image representation. Patch embeddings (z) are then projected thought a linear
projection E to D dimension (i.e., D = 1024) as in Eq. 1. Embeddings are then passed to the Transformer
encoder, which consists of Multi-Head Attention (MHA) (Eq. 2) and MLP blocks (Eq. 3). Before every block,
a layer normalisation (Norm) is employed, and residual connections are also applied after every block. Image
representation (ŷ) is produced as in Eq. 4.

z0 = [xclass;x
1
pE;x2

pE;x3
pE; . . . ;xN

p E] +Epos, E 2 R(P 2
.C)⇥D

,Epos 2 R(N+1)⇥D (1)

z0
`
= MHA(Norm(z`�1)) + z`�1, ` = 1 . . . L (L = 24) (2)

z` = MLP(Norm(z0
`
)) + z0

`
, ` = 1 . . . L (3)

ŷ = Norm(z0L) (4)

In terms of MHA, self-attention is performed for every patch in the sequence of the patch embeddings
independently; thus, attention works simultaneously for all the patches, leading to multi-head self-attention.
Three vectors, namely Query (Q), Key (K) and Value (V ), are created by multiplying the encoder’s input (i.e.,
patch embeddings) by three weight matrices (i.e., WQ, WK and W

V ) trained during the training process to
compute the self-attention. The Q and K vectors undergo a dot-product to output a scoring matrix representing
how much a patch embedding has to attend to every other embedding; the higher the score is, the more attention
is considered. The score matrix is then scaled down and passed into a softmax to convert the scores into
probabilities, which are then multiplied by the V vectors, as in Eq. 5, where dk is the dimension of the K

vectors. Since the multi-attention mechanism is employed, self-attention matrices are then concatenated and
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fed into a linear layer and passed to the regression head.

Attention(Q, K, V) = softmax(
QK

T

p
dk

)V (5)

We argue that self-attention allows our model to attend to image regions that can be semantically relevant for
classification and learns the visual features across the entire image. Since the standard ViT has one classification
head implemented by an MLP, it has been edited to meet our model objective: to predict M number of attributes
(i.e., depending on the datasets used). The motivation behind this is that the network is assumed to learn the
notion of classes to predict attributes. For the objective function, we employed the Mean Squared Error (MSE)
loss, as the continuous attributes are used as in Eq. 6, where yi is the observed attributes, and ŷi is the predicted
ones.

LMSE =
1

M

MX

i=1

(yi � ŷi)
2 (6)

During testing, instead of applying the extensively used dot product as in [Xu et al., 2020], we consider the
cosine similarity as in [Gidaris and Komodakis, 2018] to predict class labels. The cosine similarity between the
predicted attributes and every class embedding is measured. The output of the similarity measure is then used
to determine the class label of the test images.

4 Experiments

Implementation Details: All images used in training and testing are adapted from the ZSL datasets mentioned
below and sized 224 ⇥ 224 without any data augmentation. We employ the Large variant of ViT (ViT-L)
[Dosovitskiy et al., 2021], with input patch size 16 ⇥ 16, 1024 hidden dimension, 24 layers, 16 heads on each
layer, and 24 series encoder. There are 307M parameters in total in this architecture. ViT-L is then fine-tuned
using Adam optimiser with a fixed learning rate of 10�4 and a batch size of 64. All methods are implemented
in PyTorch1 on an NVIDIA RTX 3090 GPU, Xeon processor, and a memory sized 32GB.

Datasets: We have conducted our experiments on three popular ZSL datasets: AWA2, CUB, and SUN, whose
details are presented in Table 1. The main aim of this experimentation is to validate our proposed method, ViT-
ZSL, demonstrate its effectiveness and compare it with the existing state-of-the-arts. Among these datasets,
AWA2 [Xian et al., 2017] consists of 37, 322 images of 50 categories (40 seen + 10 unseen). Each category
contains 85 binary as well as continuous class attributes. CUB [Wah et al., 2011] contains 11, 788 images
forming 200 different types of birds, among them 150 classes are considered as seen, and the other 50 as
unseen, which is split by [Akata et al., 2016]. Together with images CUB dataset also contains 312 attributes
describing birds. Finally, SUN [Patterson and Hays, 2012] has the largest number of classes among others. It
consists of 717 types of scene, divided into 645 seen and 72 unseen classes. The SUN dataset contains 14, 340
images with 102 annotated attributes.

Table 1: Dataset statistics in terms of granularity, number of classes (seen + unseen classes) as shown within
parenthesis, number of attributes and number of images.

Datasets Granularity # Classes (S + U) # Attributes # Images
AWA2 [Xian et al., 2017] coarse 50 (40 + 10) 85 37,322
CUB [Wah et al., 2011] fine 200 (150 + 50) 102 11,788
SUN [Patterson and Hays, 2012] fine 717 (645 + 72) 312 14,340

Evaluation: In this work, we train our ViT-ZSL model following the inductive approach [Wang et al., 2019].
Following [Xian et al., 2019a], we measure the top-1 accuracy for both seen as well as unseen classes. To

1Our code is available at: https://github.com/FaisalAlamri0/ViT-ZSL
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capture the trade-off between both sets of classes performance, we use the harmonic mean, which is the primary
evaluation criterion for our model. Following the recent papers (e.g., [Xu et al., 2020], [Chao et al., 2016]), we
apply Calibrated Stacking [Chao et al., 2016] to evaluate the considered methods under GZSL setting, where
the calibration factor � is dataset dependant and decided based on a validation set.

Quantitative Results: We consider the AWA2, CUB and SUN datasets to show the performance of our pro-
posed model and compare the performance with related arts. Table 2 shows the quantitative comparison be-
tween the proposed model and various other GZSL models. The performance of each model is shown in terms
of Seen (S) and Unseen (U) classes and their harmonic mean (H).

Table 2: Generalised zero-shot classification performance on AWA2, CUB and SUN

Models AWA2 CUB SUN
S U H S U H S U H

DAP [Lampert et al., 2009] 84.7 0.0 0.0 67.9 1.7 3.3 25.1 4.2 7.2
IAP [Lampert et al., 2009] 87.6 0.9 1.8 72.8 0.2 0.4 37.8 1.0 1.8
DeViSE [Frome et al., 2013] 74.7 17.1 27.8 53.0 23.8 32.8 30.5 14.7 19.8
ConSE [Norouzi et al., 2014] 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6
SSE [Zhang and Saligrama, 2015] 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0
SJE [Akata et al., 2015] 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8
ESZSL [Romera-Paredes and Torr, 2015] 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8
LATEM [Xian et al., 2016] 77.3 11.5 20.0 57.3 15.2 24.0 28.8 14.7 19.5
ALE [Akata et al., 2016] 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3
SAE [Kodirov et al., 2017] 82.2 1.1 2.2 54.0 7.8 13.6 18.0 8.8 11.8
AREN [Xie et al., 2019] 92.9 15.6 26.7 78.7 38.9 52.1 38.8 19.0 25.5
SGMA [Zhu et al., 2019] 87.1 37.6 52.5 71.3 36.7 48.5 - - -
APN [Xu et al., 2020] 78.0 56.5 65.5 69.3 65.3 67.2 34.0 41.1 37.6
*GAZSL [Zhu et al., 2018] 86.5 19.2 31.4 60.6 23.9 34.3 34.5 21.7 26.7
*f-CLSWGAN [Xian et al., 2018] 64.4 57.9 59.6 57.7 43.7 49.7 36.6 42.6 39.4
Our model (ViT-ZSL) 90.0 51.9 65.8 75.2 67.3 71.0 55.3 44.5 49.3

S, U, H denote Seen classes (Ys), Unseen classes (Yu), and the Harmonic mean, respectively. For each scenario, the
best is in red and the second-best is in blue. * indicates generative representation learning methods.

DAP and IAP [Lampert et al., 2009] are some of the earliest works in ZSL, which perform poorly compared
to other models. This is due to the assumptions claimed in these approaches regarding attributes dependency.
In real-world animals with attributes ‘terrestrial’ and ‘farm’ are dependent but are assumed independent by
such models, which are noted as incorrect by [Akata et al., 2016]. Our model ViT-ZSL does not assume this,
but rather it considers the correlation between attributes, which self-attention helps to achieve by considering
both positional and contextual information of the entire sequence of patches. DeViSE [Frome et al., 2013]
and ConSE [Norouzi et al., 2014] learn a linear mapping between images and their semantic embedding space.
They both make use of the same text model trained on 5.4B words from Wikipedia to construct 500-dimensional
word embedding vectors. Both use the same baseline model, but DeViSE replaces the last layer (i.e., softmax
layer) with a linear transformation layer. In contrast, ConSE keeps it and computes the predictions via a
convex combination of the class label embedding vectors. ConSE, as presented in Table 2 outperforms DeViSE,
but DeViSE is generally performing better on the unseen classes. Similarly, SJE [Akata et al., 2015] learns
a bilinear compatibility function using the structural SVM objective function to maximise the compatibility
between image and class embeddings. ESZSL [Romera-Paredes and Torr, 2015] uses the square loss to learn
bilinear compatibility. Although ESZSL is claimed to be easy to implement, its performance, in particular
for GZSL, is poor. ALE [Akata et al., 2016], which belongs to the bilinear compatibility approach group,
performs better than most of its group member. LATEM [Xian et al., 2016], instead of learning a single bilinear
map, extends the bilinear compatibility of SJE [Akata et al., 2015] as to be an image-class pairwise linear by
learning multiple linear mappings. It performs better than SJE on unseen classes but with a lower harmonic
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Figure 3: Representative examples of attention. First row: Original images, Middle: Attention maps, and
last: Attention fusions. From left to right, ViT-ZSL is able to focus on object-level attributes and learn objects
discriminative features when objects are partly captured (first three columns images), occluded (fourth column
images) or fully presented (last two columns images).

mean due to its poor performance on seen classes. Generative ZSL models such as GAZSL [Zhu et al., 2018],
and f-CLSWGAN [Xian et al., 2018] are seen to reduce the effect of the bias problem due to the inclusion of
synthesised features for the unseen classes. However, this does not apply to our method, as no synthesised
features are used in our case; instead, solely the features extracted from seen classes are used during training.
AREN [Xie et al., 2019], SGMA [Zhu et al., 2019] and APN [Xu et al., 2020] are non-generative ZSL models
focusing on object region localisation using image attention. They are the most relevant works to ours as
attention mechanism is included in these models architecture. However, they consist of two branches in their
models, where the first learns local discriminative visual features and the second captures the image’s global
context. In contrast, our model uses only one compact network, where the input is the image patches so that
the global and local discriminative features can be learned using the multi-head self-attention mechanism.

Our model ViT-ZSL, as shown in Table 2, achieves the best harmonic mean on AWA2. It also performs
as the third best on both seen and unseen classes. Compared with the other models, it scores 90.02%, where
the highest is the highest is AREN with 92.9% accuracy. As the comparison illustrated follows the GZSL
setting using the harmonic mean as the primary evaluation metric for GZSL models, ViT-ZSL outperforms all
state-of-the-art models. In terms of the CUB dataset, our method achieves the second-highest accuracy for seen
classes, but the highest for unseen. In addition, our ViT-ZSL obtains the best harmonic mean score among all
the reported approaches. On SUN datasets, which has the most significant number of object classes among
other datasets, our model performs as the best for both seen and unseen classes, achieving a harmonic mean of
47.9%, the highest compared to all other models.

Attention Maps: In Figure 3, we show how our model attends to image regions semantically relevant to the
object class. For example, in the images of the first three columns, the entire objects’ shapes are absent (i.e.,
only the top part is captured), and in the image in the fourth column, the groove-billed ani bird is impeded by a
human hand. Although these images suffer from occlusion, our model accurately attends to the objects in the
image. Thus, we believe that ViT-ZSL definitely benefits from the attention mechanism, which is also involved
in the human recognition system. Clearly, we can say that our method has learned to map the relevance of
local regions to representations in the semantic space, where it makes predictions on the visible attribute-based
regions. Similarly, in the last two columns images of Figure 3, it can be noticed how the model pays more
attention to some object-level attributes (i.e., Deer: forest, agility, furry etc., and Vermilion Flycatcher: solid
and red breast, perching-like shape, notched tail). It can also be noticed that the model focuses on the context
of the object, as in the second column images. This can be due to the guidance of some attributes (i.e., forest,
jungle, ground and tree) which are associated with leopard class. However, as shown in the first column, the
model did not pay much attention to the bird’s beak compared to the head and the rest of the body, which
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needs to be investigated further and building an explainable model as in [Xian et al., 2019b] could be a way to
accomplish this.

5 Conclusion

In this paper, we proposed a Vision Transformer-based Zero-Shot Learning (ViT-ZSL) model that specifically
exploits the multi-head self-attention mechanism for relating visual and semantic attributes. Our qualitative
results showed that the attention mechanism involved in our model focuses on the most relevant image regions
related to the object class to predict the semantic information, which is used to find out the class label during
inference. Our results on the GZSL task, including the highest harmonic mean scores on the AWA2, CUB and
SUN datasets, illustrate the effectiveness of our proposed method.

Although our method achieves very encouraging results for the GZSL task on three publicly available
benchmarks, the bias problem towards seen classes remains a challenge, which will be addressed in future
work. Training the model in a transductive setting, where visual information for unseen classes could be
included, is a direction to be examined.
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Abstract

Image and video reconstruction are well-researched problems in computer vision. Several problems
involving reconstruction are actively researched areas in computer vision such as image denoising and de-
blurring, super resolution, inpainting etc. In recent years, the state-of-the-art (SoA) in these areas has come
from deep learning methods, which train neural networks for the specific task, often in a supervised man-
ner. Naturally, the choice of the loss function in these algorithms is important. In this paper, we study a
general-purpose loss function that can be used for several SoA image or video reconstruction method for
performance enhancements. We show that the addition of the novel loss function during training improves
the performance of SoA algorithms in five different image and video reconstruction tasks.

Keywords: Image and Video Reconstruction, Loss Function, Frequency Domain, Fast Fourier Transform.

1 Introduction

The non-linear nature of image and video reconstruction makes it a difficult task. In other words, the desired
output may not linearly map to the input due to the presence of distortions such as noise, incorrect exposure,
inconsistent colours, poor resolution, etc. Recently, Convolutional Neural Networks (CNNs) have proven quite
effective in several reconstruction tasks such as image deblurring [Kupyn et al., 2019], super-resolution [Dong
et al., 2015], image inpainting [Xie et al., 2019], exposure correction [Yadav et al., 2021], denoising [Lehtinen
et al., 2018] etc. CNNs by design are capable of learning complex, non-linear mappings between different data
domains. But despite the superior performance, they suffer from most, if not all of the distortions mentioned
above. In a recent work, [Yadav et al., 2021], proposed a generic loss function by exploiting the frequency
domain and showed improvements in image exposure correction in several of these aspects. However, the
capacity of their approach in other reconstruction tasks is still not explored and therefore remains an open
problem. In this paper, we extend their work by studying a wide variety of image and video reconstruction tasks
namely deblurring, super-resolution, inpainting, and denoising. In the rest of this section, we briefly highlight
some of the task specific challenges and the intuition behind addressing these challenges in the frequency
domain.

In image deblurring, the aim is to remove blur from images which can be caused by many factors such
as unsuitable focal length or aperture size, low light, low frame rate and fast motion, camera shake, or lack
of focus. Blur can also be of different types such as motion blur, gaussian blur, bokeh blur, zoom blur, etc.
These different blur types make this problem ill-posed and challenging, which has been addressed by many
deep learning and classical solutions. In the fast Fourier transform (FFT), high and low frequency components
present away from and close to the center, respectively. Image blur generally results in a reduction of high-
frequency components of the image. Thus, the frequency coefficients of a blurred image are dominantly skewed
towards low-frequency coefficients as shown in figure 1.

In super-resolution, the goal is to upscale the image to a higher resolution while preserving the high-
frequency components. It has several applications such as displaying low-resolution pictures on giant screens,
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person re-identification from low-resolution surveillance cameras, image classification [Hao et al., 2018], edge
detection [Dai et al., 2016] etc. Image interpolation or upsampling is a basic form of super-resolution. It in-
creases the resolution of the image by averaging the nearby pixels to approximate the newly added pixels. The
averaging operation introduces blur to the image and the loss of sharp edges and other high-frequency compo-
nents, as shown in figure 1. Recent deep learning-based methods for super-resolution can learn to accurately
predict high-frequency information by performing an inverse non-linear mapping.

In image-inpainting, the goal is to fill in the pixels of an image that are missing or occluded such as oc-
clusions in the form of subtitles in videos or by removing unwanted objects from the image. It is a difficult
problem to solve due to the ill-posed nature of filling in the missing/occluded pixels: For an 8-bit image, there
are 28 possible values for a missing pixel. However, prediction of the missing pixels can be assisted by CNN
based networks which take advantage of the spatial correlations that are characteristic in most natural images.
To fill in an occluded region in an image, the frequency domain can help fill in pixels such that the filled-in
region matches the frequency characteristics of the surrounding pixels. Small occlusions in an image can lead
to dramatic changes in its frequency domain representation, as shown in figure 1.

In image and video denoising, the aim is to separate noise from the original data. There are a variety of
causes for noise. It can be caused by the camera heat generated during the camera’s operation or it can be
external due to low light i.e. transmission noise. Each type of noise has a particular characteristic: it can be
random, or it can be related to the underlying image. For example, salt and pepper noise is independent of
the underlying image, while multiplicative noise is dependent on the underlying image. Such diversity makes
denoising a cumbersome problem to solve. Often, noise is better represented in the frequency domain because
its frequency components can be quite distinct from the frequency components in the original image, as shown
in figure 1. The FFT of the noisy image in figure 1 is more crowded than the FFT of the original image. Deep
learning-based approaches work well for image denoising due to their ability to understand spatial relationships
in an image [LeCun et al., 1995]. This ability allows deep learning-based models to accurately estimate the
correct pixel values in noisy images.

The goal of this work is to use a loss function that can improve existing SoA image and video reconstruction
approaches in deep learning. Loss functions quantify how different the model’s output is from the ground truth.
This value is used during the back-propagation of the model training phase. Back-propagation is then used
for re-tuning the weights of the model so that the loss function gets minimized. To minimize a loss function
at a faster rate, its rate of change should be higher than that of other loss functions at the beginning of the
training phase. This can be achieved by using a loss function that measures the distance in both the image
and the frequency domain. This increases the room for improvement by presenting an error from diverse
representations.

In general, the frequency domain is often used in the computer vision community for image processing and
digital signal processing. But, to the best of our knowledge, barring [Yadav et al., 2021], it has not been used for
general-purpose loss functions for image and video reconstruction tasks. Frequency domain transforms have
characteristics that make them suitable for use in image and video reconstruction. We show this in figure 1.
The common deformations in the images lead to dramatic changes in the frequency domain. We theorize that
compensating for these dramatic changes in the frequency domain may improve the existing image and video
reconstruction tasks. The comparison in figure 1 shows that the frequency domain provides value in locating
frequencies that would be hard to locate in the image domain.

There are many frequency domain transforms available to build such a loss function, Namely, DCT, FFT,
DFT, etc. DCT is used for image compression because it can condense an image’s frequency components into a
very small space. This is unfortunately the opposite of what a loss function should ideally do. When comparing
DFT to DCT, frequency domain components are spread out over a larger area for DFT. This makes it more
suitable to be used in a loss function. The time complexity required for DFT is of the order of N 2 where N is
the number of pixels in an image. Next, FFT is another frequency domain transform that can be used to create
a frequency domain loss function. It is a faster implementation of the DFT which also works for continuous
signals, making it more general-purpose than DFT. Time complexity to compute the FFT of an image is equal
to N £ log N . This makes it an ideal choice to be used as a loss function for image reconstruction tasks. It offers
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similar boosts in accuracy as [Jiang et al., 2020], and is more general-purpose than [Jiang et al., 2020] due to
its compatibility with continuous signals, and is computationally more efficient.

Our contribution in this study is that we thoroughly investigate the capacity of the frequency loss func-
tion proposed by [Yadav et al., 2021] in each of the aforementioned domains — image deblurring, image
super-resolution, image inpainting, and image and video denoising and subsequently, notice significant im-
provements. For each application, we choose the SoA method, retrain it using the frequency loss and compare
the performance both quantitatively and qualitatively.

2 Related Works

Loss Functions: In the literature, several loss functions are available for model training. We divide these
loss functions into two categories: general purpose loss functions and specific purpose loss functions. General
purpose loss functions such as L1 loss and L2 loss are commonly used in image and video reconstruction
tasks. Specific loss functions are developed by researchers to address a particular problem. They are usually
not general-purpose or are not tested for a wide variety of problems. L1 loss function is the summed absolute
difference between the output and the ground truth. L2 loss function is similar to the L1 loss function. However,
the difference between the output and the ground truth gets squared in L2 loss. Other general-purpose loss
functions have been shown to give favourable results but are not adopted as an industry standard yet.

[Mechrez et al., 2018] present a loss function that does not require paired datasets. Instead of having to
compare the output with its aligned ground truth, their loss function can deal with unaligned image pairs. To
do this, they find contextual similarity between features, which can be present in different areas of the image.
They apply this loss function in four SoA models for style transfer [Gatys et al., 2016], single-image animation
[Johnson et al., 2016], puppet control [Isola et al., 2017], and domain transfer [Zhu et al., 2017]. Since these
problems deal with unaligned datasets, they were unable to provide quantitative comparisons with the SoA
models. However, they did present comparable or improved qualitative results. In this paper, we try to show
how the novel loss function introduced by [Yadav et al., 2021] can improve existing SoA approaches quantita-
tively.

Image and Video Reconstruction: Due to the plethora of work that exists in this area, an exhaustive discussion
is beyond our scope. We mention the baselines compared with and other papers directly related to this work. A
prominent SoA approach for deblurring is DeblurGAN-v2 [Kupyn et al., 2019] which improves the efficiency
of the entire working of its predecessor, DeblurGAN [Kupyn et al., 2018]. For super-resolution, we build on
SRCNN [Dong et al., 2015] that uses a L2 loss. Newer approaches such as [Ledig et al., 2017, Wang et al.,
2018] use GAN based loss functions to achieve impressive results. In image inpainting, the goal is to predict the
obscured or missing areas of an image. [Xie et al., 2019] present an approach by combining style, perceptual
and L1 loss. Other recent important approaches include [Yu et al., 2019, Yu et al., 2018]. For image denoising
approach, the SoA is Noise2Noise [Lehtinen et al., 2018], which performs denoising using a U-net architecture
[Ronneberger et al., 2015] and L2 loss. A recent comprehensive survey of recent approaches in image denoising
using deep learning can be found in [Tian et al., 2020]. A recent SoA approach in video denoising is VideNN
[Claus and van Gemert, 2019]. Their model is based on two types of networks: spatial denoising and temporal
denoising. Spatial denoising is built upon the architecture provided by [Zhang et al., 2017] which is a SoA
CNN architecture for gaussian denoising.

3 Proposed Approach

To devise a loss function based on a mathematical function such as FFT, we need to ensure that the loss function
stays differentiable. FFT outputs a complex signal along with a real signal. This output denotes the sines and
cosine waves of all the frequency present in the image. Unfortunately, this output is not reliably differentiable
due to the presence of the complex domain signal. To make it differentiable, we compute the magnitude of
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the FFT and convert it into a purely real signal by computing its magnitude. After creating a differentiable
frequency domain transform, a loss function should also compute the distance between the model output and
the ground truth. To do this, we use either L1 or L2 distance between the two as shown in 1, where yGT and yO

represent ground-truth and prediction, respectively.

L1 =
nX

i=1
|yGT ° yO |, L2 =

Pn
i=1(yGT ° yO)2 (1)

For an output image I1, whose ground truth is I2, the F-loss is defined in equation 2. Here, K is a scaling factor,
it is the scale at which the loss is being computed. For example, to calculate the loss at half the resolution, K is
set to 2, for calculating loss at quarter the resolution, K is set to 4. F F T (I ) refers to the fast Fourier transform
of image I . M and N are the number of pixels horizontally and vertically of the input images. We compute this
loss at different scales (K) of the images and obtain the loss function (F-loss) shown in equation 3.

L
M
K £ N

K
F F T = K 2

M £N

ØØØ||F F T (I1)||° ||F F T (I2)||
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M
K £ N

K (2)

F F TF i nal (I1, I2) = L
M
1 £ N

1
F F T +L

M
2 £ N

2
F F T +L

M
4 £ N

4
F F T (3)

Our approach in all the experiments in the following section is to first train and test the chosen models in
their default settings and do it again but with an additional F-loss term (equation 3) in the original loss function.
We then assess the causal results of adding the F-loss in the loss function of each approach.

4 Experiments and Results

To assess the effectiveness of F-loss, we experiment on six SoA deep learning-based approaches for image and
video reconstruction. To prove a causal result of the loss function, we only change the loss function and keep
all other settings unchanged from the original work. Depending on how the SoA approaches were coded, we
accordingly used the PyTorch or the Tensorflow version of the frequency loss function.

4.1 Deblurring

Our framework for deblurring is based on DeblurGAN-v2 [Kupyn et al., 2019]. The loss function used in this
approach is described in equation 4. The overall loss, L, depends on three other losses. Lp is the pixel-wise loss,
which, in this case, is the L2 loss. This loss function works reasonably well in most general applications but
it tends to yield over-smoothened images [Ledig et al., 2017]. To counter this over-smoothening, the content
loss LX is used which compares the output’s and ground truth’s high-level features calculated from pre-trained
CNNs. Finally, Ladv is used to stabilize the training process of the GAN network by computing loss based
on the generator and the discriminator networks’ outputs. The difference in the FFT representations is more
obvious than the difference in the spatial-image representations.

We hypothesize that F-loss, due to its operation in the frequency domain, will aid the network
[Kupyn et al., 2019] in recovering the lost high-frequency components more effectively. To test this, we first
trained the given model from scratch using the default hyper-parameters and training settings. The GoPro
dataset [Nah et al., 2017] was used for this, as this was the same dataset that was used in the original approach.
We then modified the equation 4 to include the F-loss, as shown in equation 5. We then repeated the same
training procedure once again from scratch. In equation 5, LF is the F-loss, and Æ is the factor value that was
set as 0.5 by a trial and error process. The testing was performed on the training-testing split of the GOPRO
dataset as provided by the creators. The quantitative results of this experiment are shown in table 1. The
addition of F-loss improves the results in both the PSNR and SSIM metrics.

L = 0.5§Lp +0.006§LX +0.01§Ladv (4)

L = 0.5§Lp +0.006§LX +0.01§Ladv +Æ§LF (5)
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Natural Image(NI) Blurred NI Upsampled NI Occluded NI Underexposed NI Noisy NI

Figure 1: First row consists of the natural image and its deformed versions. Second row is the FFT of the above
row. The difference between the FFTs of the natural image is more evident than the difference between the
natural images themselves.

Task Approach PSNR SSIM
Deblurring DBGANv2[Kupyn et al., 2019] 29.18 0.89
Deblurring DBGANv2-F-loss 29.49 0.91

Super-Resolution SRCNN[Dong et al., 2015] 28.86 0.92
Super-Resolution SRCNN-F-loss 29.10 0.94
Image-Inpainting LBAM[Xie et al., 2019] 26.11 0.86
Image-Inpainting LBAM-F-loss 26.39 0.87

Exposure correction Chen[Chen et al., 2018] 28.60 0.767
Exposure correction Chen-F-loss 28.89 0.776

Image denoising Gaussian-Clean[Lehtinen et al., 2018]) 30.30 0.87
Image denoising Gaussian-Clean-F-loss 30.80 0.89
Video denoising VideNN[Claus and van Gemert, 2019] 31.5 -
Video denoising VideNN-F-loss 32.48 -

Table 1: Quantitative results on SoA approaches before and after adding F-loss to the loss function. This
proves a quantitative causal improvement upon the addition of F-loss for a wide variety of image and video
reconstruction tasks.

4.2 Super-resolution

We base our framework for super-resolution on SRCNN [Dong et al., 2015]. To perform this experiment, we
first trained the SRCNN from scratch, keeping all the hyper-parameters the same as they were defined by the
authors. The dataset used for this training was the BSD200 dataset [Martin et al., 2001]. We then added the
F-loss to the L2 loss function. This new loss function is described in the equation 6, where LF is the computed
value of the F-loss between the output high-resolution image and the ground truth high-resolution image and Æ
was set to 1. With this new loss function, we repeated the same training procedure from scratch. The evaluation
dataset for this was the set5 dataset [Bevilacqua et al., 2012]. The quantitative results of training [Dong et al.,
2015] model on set5, with and without F-loss, are shown in table 1. The addition of F-loss improves the results
in both the PSNR and SSIM metrics.

L =
nX

i=1
(yGT ° yO)2 +Æ§LF (6)

4.3 Image Inpainting

The framework for this task is based on [Xie et al., 2019]. The LBAM approach employs a variety of loss
functions, their collective formula is shown in equation 7. Here, ∏1, ∏2, ∏3, ∏4 are empirically set as ∏1 = 1, ∏2

= 0.1, ∏3 = 0.05, ∏4 = 120. Ll1 is the L1 loss, which the authors call "Pixel Reconstruction Loss". Lper c is the
perceptual loss, which assesses the high level information of the output. The Lper c is defined on the VGG-16
network [Simonyan and Zisserman, 2014], which is pre-trained on ImageNet dataset [Deng et al., 2009]. Lst yle
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is the "style Loss" which they claim recovers detailed textures better. Lad v is the widely used adversarial loss
[Goodfellow et al., 2014] which is computed by the discriminator network.

The LBAM model was trained from scratch using the default parameters provided by the authors. The
dataset used for this experiment was the Paris StreetView dataset [Philbin et al., 2008]. This is the same dataset
that was used in the original LBAM paper [Xie et al., 2019]. Next, we repeated the same training procedure
but used the loss function described in equation 8. In equation 8, we add the F-loss in the original loss function
(equation 7). The F-loss is controlled via the Æ factor, which is set empirically to 1.05. The training and testing
split was the same as that used by the authors of LBAM. The quantitative results of this experiment are shown
in table 1. The addition of F-loss improves the results in both the PSNR and SSIM metrics.

L =∏1Ll1 +∏2Lad v +∏3Lper c +∏4Lst yle (7)

L =∏1Ll1 +∏2Lad v +∏3Lper c +∏4Lst yle +ÆLF (8)

4.4 Exposure Correction

We would like to point the readers to this paper’s parent work [Yadav et al., 2021]. That publication is focused
entirely on the quantitative and qualitative improvements in an SoA exposure correction model [Chen et al.,
2018] after the addition of F-loss (table 1).

4.5 Image Denoising

We choose the framework by [Lehtinen et al., 2018] as the starting point for image denoising. We first trained
the given network from scratch using the default settings as provided by the authors. We trained this on the
Set14 dataset [Zeyde et al., 2010]. Next, we repeated the prior process using the same model and the same
dataset, but this time adding the F-loss as described in equation 9 to the original loss function. The Æ was set to
1. The quantitative results of this experiment are shown in table 1. The addition of F-loss improves the results
in both the PSNR and SSIM metrics.

L = L2 +Æ§LF (9)

4.6 Video Denoising

For video denoising we start from VideNN [Claus and van Gemert, 2019]. Their model is based on two types of
networks: spatial denoising and temporal denoising. Spatial denoising is built upon the architecture provided
by [Zhang et al., 2017] which is a SoA CNN architecture for gaussian denoising. However, this architecture
also works well for realistic signal-dependent noise. Three consecutive frames are the input for three of such
spatial denoising models. For the output, these spatially denoised three frames are then fed to the temporal
denoising network. The temporal denoising network then denoises the middle frame of the three frames that it
receives. Both the spatial and temporal networks estimate the noise in the frames and then subtract it from the
noisy input.

The L2 loss is used for both temporal and spatial denoising networks. In the previous experiment, we
showed how an image-denoising network can benefit from the addition of the F-loss. Similarly, we hypothesize
that the addition of the F-loss in a video-denoising network will also assist it in getting better quantitative
results. To test this, we first trained the given network from scratch using the default settings as provided by
the authors. We trained this on the Waterloo Exploration dataset [Ma et al., 2017]. Next, we repeated the prior
process using the same model and the same dataset, but this time adding the F-loss as described in equation
10. The Æ was set to 1. The quantitative results of this experiment are shown in table 1. The addition of F-loss
improves the results for the PSNR metric.

L =
nX

i=1
(yg r oundTr uth ° yout put )2 +Æ§LF (10)
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5 Conclusion, Limitations and Future Work

In this paper, we explored the applications of a novel loss function for image and video reconstruction. We
show that the addition of this loss function to six SoA approaches helps them in surpassing their results. One
limitations of this loss function is that the factor value Æ needs to be manually fine-tuned. We also hope to
apply this loss function to more deep learning SoA video reconstruction approaches. In future work, we can
also improve results in applications such as deblurring and super-resolution with an adjustment. The disparity
between the FFT of ground truth and output mainly arises for the high-frequency components. Therefore, a de-
sirable modification could be to create a dynamic weighted F-loss function for deblurring and super-resolution
that adjusts its weightage of the high or low-frequency components. If it consistently sees a higher disparity
in the high or low-frequency regions, then it assigns a higher weight to those regions. This will enable a faster
convergence, and further reduce the training times of the respective models.
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Abstract

One of the challenges facing creators of virtual reality (VR) film is that viewers can choose to view the
omnidirectional video content in any direction. Content creators do not have the same level of control on
viewers’ visual attention as they would on traditional media. This can be alleviated by estimating the visual
attention during the creative process using a saliency model, which can provide a probability as to what
would draw a viewer’s eye. In this study, we analyse both the efficacy of omnidirectional video saliency
estimation for creative processes and the potential utility of saliency methods for directors. For this, we
use a convolutional neural network-based video saliency model for omnidirectional video. To assist the
directors in viewer guidance, we propose a metric that provides a measure of saliency estimation in the
intended viewport. We also evaluate the selected saliency model, AVS360, by comparing the output of this
saliency model to the actual viewing direction. The results show that the selected saliency model can predict
the viewers’ visual attention well and the proposed metric can provide useful feedback for content creators
regarding possible distractions in the scene.

Keywords: omnidirectional video, 360 degree video, saliency, cinematic VR

1 Introduction

Virtual reality (VR) film, also known as cinematic VR, is a form of VR entertainment that utilises among other
formats omnidirectional (also known as 360-degree) video. Visual language in VR is still in development, and
currently, the techniques used to relate a narrative to viewers in the form are derived from those of traditional
cinema [1]. As the viewer has the freedom to look in any direction of the 360-degree environment that they
are present in within the format [2], the director of the content must ensure that the narrative is observed as
intended by the viewer and to do so in an immersive manner [3].

One method in which to obtain a probability of how a viewer may view a scene is through the use of
computational saliency. Saliency models have been developed to evaluate what attracts the human eye within
visual scenes [4]. From psychological studies, it is said that bottom-up and top-down processes take place.
Bottom-up being the initial attraction based on the physical properties of the image, then the top-down process
begins which relates to the task the viewer has while observing the image [5]. These computational models
have also been adapted for use within 360-degree video [6].

Using saliency models to estimate the visual attention for a VR film could help the content creator to
attract viewers’ attention to areas which they deem important to the understanding of the narrative and gain
an understanding of other competing salient areas. To allow this, the saliency models can be integrated into
post-production environments, as can be seen in Fig. 1.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under the
Grant Number 15/RP/27760.
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Figure 1: Mock up of a saliency estimator in a post-production environment. The director’s cut and corre-
sponding viewport are visible on the RGB image from the film frame and the saliency estimate. The saliency
estimate shows that the director’s cut viewport is salient, but there is also a region that could compete for
viewers’ attention. Use of saliency estimation algorithms allows for intervention during post-production.

This paper investigates the effectiveness of using a saliency model in post-production environments, aiming
to assist the directors in viewer guidance. With this aim, we build a new metric (i.e., viewport-based saliency
ratio - VPSR) that can help directors in concentrating the viewers’ visual attention and optimising the VR film in
the post-production. The proposed VPSR metric can be used with different 360-degree video saliency models.
To validate the proposed VPSR metric, we used an omnidirectional video saliency model, i.e., AVS360 [6]
developed in our research group for saliency prediction in ODVs (omnidirectional video), and computed the
saliency on a VR film database with viewers’ visual attention and annotations of director’s intended viewing
areas, i.e., Director’s Cut database [7]. To find out the answer to “How successful is the selected saliency model
in predicting the points that attract visual attention?”, we first measure the saliency model’s output for all the
frames of the omnidirectional video. For different contents, the results are then compared to ground truth visual
attention to see how well the saliency prediction model performed. Secondly, to answer “How successful is
VPSR in finding frames that need attention?”, we report the frame-wise results for the proposed viewport-based
saliency ratio metric, and we measure how well the director’s preferred viewport area is related to the points of
saliency within the frame as predicted by the model. Given that AVS360 predicts viewers’ attention with high
accuracy, the results show the VPSR metric can identify the frames of the video that needs further attention.
Our investigation concludes that the use of the proposed metric on saliency estimation methods can identify
cases where attention guidance may fail, which can be useful for directors to take appropriate action.

2 Related Work

Among the techniques used by filmmakers in order to communicate their message to the audience are cine-
matography, mise-en-scène, sound, and editing [8]. In addition to this, various other methods of guiding the
viewer within a VR film have been explored. Investigating the methods for guidance, Speicher et al. [9] found
that giving the viewer an object to follow performed best. Editing from cinematic VR has also formed an area
of research [10]. A comprehensive review of papers that have investigated guidance within VR and augmented
reality systems can been found in [11].

In order to investigate the ability of techniques derived from traditional cinema within a 360-degree envi-
ronment, Knorr et al. [7] developed a database which included the creator’s intended viewing direction at all
times throughout the film. This intended viewing direction was given the title of the “Director’s Cut” (DC),
and this point and corresponding viewport are named as “DC point” and “DC viewport” throughout this paper.
These intended viewing directions were then compared to actual viewing directions of 20 participants to see
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(a) Viewport - ≠ (b) Weight map - W (c) Saliency map - S (d) Thresholded saliency map - S50

Figure 2: Visualisation of the (a) viewport, (b) weight map, (c) whole saliency map for “Luther” video -
Frame #4096 with overimposed viewport, and (d) thresholded saliency map of the same frame for p = 50 with
overimposed viewport. Please refer to Eqn. 4 for the computation of the VPSR metric.

how viewers consume VR films and how it relates to directors’ intentions. Further studies analysed certain
elements of the devices used within the films in order to attract the viewers’ attention [12] and the styles of
cuts, where one scene transitions to another, and their effects on viewer behaviour within the films [13].

To anticipate the user behaviour and estimate viewers’ visual attention, saliency estimation methods are
developed in image processing and computer vision communities [14]. Due to their spherical nature, omnidi-
rectional images and videos used in immersive systems and VR film are expected to have a different interaction
paradigm compared to traditional images and video. How people consume omnidirectional images [15] and
video [16] has been explored in the past. Many saliency estimation methods have been developed in the last
20 years [14]; however, more recent advances in the field have been made due to machine learning [17]. An
example as to how these models have been used in omnidirectional images can be found in the work of Mon-
roy et al. [18] referred to as SalNet360, where the spherical coordinates of the pixels are taken into account.
AVS360 [6] which is the saliency model used in this study is a more recent model that caters for omnidirec-
tional video. This model built on work completed in [19]. Development in this area has also included using
audio information [20].

To investigate the use of saliency in VR films, we examined the relationship between the SalNet360 saliency
estimator and the viewer fixation points at plot points in our previous study [21]. In this earlier study, we
focused on plot points in particular and discussed the results for the selected frames. In this paper, differently
than in [21], we use AVS360, and we aim to focus on developing a tool that could be used by directors and
content creators to identify regions in the scene that could distract viewers from intended viewing areas. To the
best of our knowledge, this is the first metric of its kind that will inform directors and content creators.

3 Proposed Metric

In this paper, we propose a new metric named viewport-based saliency ratio (VPSR) to address the need for a
tool that allows directors to optimise their cinematic VR content during post-production. The main goal for this
metric is to provide a score to describe the ratio of total probability of estimated saliency within the director’s
intended viewport. The secondary goal for this metric is to warn the director for possible distractions in the
scene that can cause loss of viewers’ attention. These distractions then can be avoided using, e.g., virtual effects
during post-production.

For our VPSR metric, we firstly create a viewport area around the DC point in each frame, which corre-
sponds to the viewport area of the HMD (Head Mounted Display) used in the database study (i.e., an Oculus
Rift CV1 headset). Following this, a viewport-based saliency ratio is calculated as follows:

VPSR(S,≠) =
P

u,v2≠S(u, v)W (u, v)
PM

u=1
PN

v=1 S(u, v)W (u, v)
(1)

where u and v are the horizontal and vertical pixel locations of an omnidirectional frame of M £ N spatial
resolution, ≠ is the viewport area as described above (see Fig. 2.(a)), S(u, v) is the saliency map value at (u, v)
location, and W is the spherical weighting map. In equirectangular projection, the originally spherical content
is increasingly distorted (stretched) along the vertical direction, as we know from geographical maps. The
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(a) “Jaunt” - Frame #3680 - VPSR: 0.677 - VPSR50: 0.909

(b) “Luther” - Frame #4690 - VPSR: 0.216 - VPSR50: 0.060

(c) “Jaunt” - Frame #0848 - VPSR: 0.018 - VPSR50: 0

Figure 3: Visualisation of viewers’ fixations and viewport corresponding to director’s intention from the Direc-
tor’s Cut database [7]. From left to right, (left) the RGB film frame with DC point (red circle) and corresponding
viewport (white overlay), (middle) saliency map with DC point (red circle) and corresponding viewport (white
overlay), and (right) saliency map with fixation locations (red circles) for two video contents: (a,c) “Jaunt” and
(b) “Luther”.

weight map W counters this effect by accounting for spherical distortions, and it gives all parts of the image
appropriate contribution to the metric. Here we use the same map as WS-PSNR [22] model, see Fig. 2.(b).

Looking at the distributions of the saliency values with the viewport in Fig. 2.(c) and the fixation distribu-
tions in Fig. 3, we notice that the lower saliency values might not attract a lot of viewer fixation. Therefore,
we try to generalize the VPSR metric using the saliency values with highest probability. For this, we first com-
pute the histogram of the saliency map S and divide the saliency values into B different bins of hi (S), where
i 2 [1,B ]. Then, taking the highest probability values into account first, we consider the p% of the total saliency
and find a threshold value ø for this p as follows:

øp = argmin
ø

ØØØØØ
BX

i=ø
hi (S)° p

100

BX

i=1
hi (S)

ØØØØØ (2)

where B is taken as B = 256 for this study. Afterward, using this threshold value, we compute the corresponding
thresholded saliency map Sp as follows (see Fig. 2.(d)):

Sp (u, v) =
(

S(u, v), if S(u, v) ∏ øp

0, if S(u, v) < øp
(3)

This ensures that we always start considering the high probability values. In the last step, we compute VPSRp

as below:
VPSRp (S,≠) =

P
u,v2≠Sp (u, v)W (u, v)

PM
u=1

PN
v=1 Sp (u, v)W (u, v)

(4)

where Sp (u, v) is the thresholded saliency map value at (u, v) location. We can notice that S100 = S, and Eqn. 4
is the more generic version of Eqn. 1, i.e., VPSR100 =VPSR.
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The proposed VPSR metric measures how well the DC viewport captures the estimated saliency compared
to the whole saliency map. The metric is bounded between [0,1], where 0 means no saliency values are under
the viewport and 1 means all are under the viewport. Sample VPSR and VPSR50 results are given in the
captions of Fig. 3.

4 Experiments

Here, we describe the dataset used to analyse the efficacy of omnidirectional video saliency estimation for
creative processes, the selected saliency estimation method, i.e., AVS360 [6], and the evaluation metrics used.

4.1 Dataset

In this paper, we use the Director’s Cut database [7] to analyse how viewers’ fixations relate to the estimated
omnidirectional video saliency. This database contains a number of cinematic VR films and includes details
from the creators as to where they intended to direct the attention of viewers. For this, creators provided
their preferred viewport area throughout the films, using the Tracker in the commercial compositing software
Nuke1 from The Foundry. The centre of this viewport (i.e., “DC point”) is recorded as U and V coordinates,
horizontally and vertically. The actual viewing directions were then collected from 20 viewers as they watched
the films in a natural manner, by collecting the centre point of viewers’ viewports [23]. Further details on this
technical process can be read in [7]. Fig. 3 visualises the RGB frames, viewers’ fixations, and the estimated
saliency maps for three different frames. The first column shows the director’s intended viewport overlayed on
the RGB frame, the second column shows the director’s intended viewport overlayed on the estimated saliency
map, and the third column shows participants’ fixation points plotted over the saliency map.

For our analysis, we selected four of the films from the Director’s Cut database: “DB”, “Jaunt”, “Luther”,
and “Vaude”. These films had the greatest amount of details as provided by the films’ creators, and they also
had a range of different lighting and guiding devices used within them.

4.2 Saliency estimation method

To investigate the use of omnidirectional video saliency on VR films and creative processes, we selected the
AVS360 model [6] as one of the recent saliency models, the implementation of which is publicly available. This
model is composed of two 3D residual networks (ResNets) to encode visual and audio cues. The first one is
embedded with a spherical representation technique to extract 360° visual features, and the second one extracts
the features of audio using the log mel-spectrogram. While this can take spatial audio into account, the DC
database was created with videos using mono sound. The AVS360 model was used as is, without any retraining
on the DC database. Interested readers are referred to the original paper [6] for further training details.

4.3 Evaluation metrics

To evaluate how well the AVS360 model predicts the regions that attract visual attention, we use two saliency
evaluation metrics: area under curve (AUC) and normalized scanpath saliency (NSS). Both AUC and NSS are
location-based metrics, and they are computed using the ground truth fixation points and estimated saliency
map. To compute AUC, the evaluation task was reframed as classification task and the area under the receiver
operating characteristic (ROC) curve is computed by finding the true positive and false positive rates. NSS on
the other hand first normalises the saliency map (i.e., saliency map is shifted to a mean of zero with standard
deviation of one) and estimates the average of the normalised saliency. Additional detail on the metrics used can
be found in [24]. To compute these metrics, we used open source implementations for NSS2 and AUC3 [25].

1https://www.foundry.com/products/nuke
2https://sites.google.com/site/saliencyevaluation/evaluation-measures
3http://www.saliencytoolbox.net/
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Figure 4: Frame-wise evaluation of the relationship between saliency estimation and directors’ intention for
each video in terms of VPSR.

5 Analysis and Discussion

5.1 Validating the use of AVS360

We first analyse how well AVS360 predicts the ground truth viewing directions. For this, the AUC and NSS
metrics are calculated, and the mean AUC and NSS metric results are reported in Table 1.

As we can see from Table 1, both AUC and NSS values support the hypothesis that the selected saliency
estimation method, AVS360, can predict the fixation locations well. The AUC score is defined in the range of
[0,1], and a high AUC score (e.g., 0.8594 as in Table 1) indicates that the estimated saliency map predicts the
distribution of the fixations well. The NSS score shows how large the saliency values correspond to the fixation
locations, and having NSS scores ª 2.5691 means that the saliency values corresponding to fixation locations
are 2.5æ away from the mean of the saliency map. That is, the estimated saliency map yields high values at
fixation locations. Both of these observations show that the AVS360 model can predict salient regions well.
Furthermore, AVS360 can identify locations that might divert visual attention.

5.2 Frame-wise VPSR results

The generic VPSR metric given in Eqn. 4 enables directors to fine-tune the VPSR results by modifying the p
value between [1,100]. To validate VPSR metric and to show how a change in p affects the results, in this sub-
section, we provide the frame-wise results for the proposed VPSR metric for two different cases: considering
the whole saliency map (p = 100) and considering the highest probabilities that sum up to 50% (p = 50).

Sample VPSR metric results were provided in the captions of Fig. 3 along with sample frames. These
sample results show that a VPSR value of 0.667 corresponds to a very good overlap between the DC viewport
and the estimated saliency while a VPSR value of 0.018 indicates poor correspondence. The values are more
intuitive for VPSR50 as it yields both higher and lower values for these examples. Fig. 4 shows the overall

Table 1: Mean AUC and NSS metric results across all frames comparing saliency maps and viewers’ viewing
directions.

Film “DB” “Jaunt” “Luther” “Vaude” Overall

AUCViewers 0.8940 0.9264 0.9346 0.8594 0.9036

NSSViewers 1.7367 2.7249 2.7531 2.5691 2.4459
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results and allows analysis of how well saliency prediction and directors’ intent agree. We can identify dips,
which indicate areas that may require intervention to keep viewers’ attention. Overall, the VPSR metric was
higher for “Luther” compared to other contents. The graphs for VPSR and VPSR50 show similar characteristics,
while VPSR50 has larger swings; therefore, it might provide more intuitive results for the director.

6 Conclusion

In this paper, we proposed a metric that allows directors to optimise their cinematic VR content for viewer
guidance. To demonstrate how this metric is capable of yielding useful scores for directors, we used the
AVS360 saliency estimation method on an omnidirectional video dataset. We first validated that AVS360
predicts viewers’ attention well, and then we presented frame-wise VPSR results. The visual results along with
the frame-wise results show that the VPSR metric is indicative of how well the intended viewports could retain
viewers’ attention.

The results indicate that the AVS360 model and the VPSR metric could form part of a plug-in that will
notify the director of regions of possible distractions within the film. The directors will be presented with
frame-wise VPSR results as shown in Fig. 4 and they can identify the dips in VPSR values (e.g., dips in visual
attention) without checking the saliency estimation results for all the frames manually. With this information
the director could then alter the film set during the production or use visual effects (VFX) in post-production
accordingly. The VFX option could even be done in an adaptable manner should the viewers’ attention stray.
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                                                                 Abstract 

Deep learning techniques are used to achieve state-of-art accuracy in semantic segmentation on 
aerial ortho-imagery datasets. These algorithms are known to be efficient in terms of accuracy but at the 
expense of computational power required for training and subsequent inference operations. In this paper 
we strive to achieve a comparable performance but with lower floating point operations per second 
(FLOPS) and less training time. With this in mind, we chose to evaluate the EfficientNet-B0 network 
configured with 5.3 millions parameters and 0.39 billion FLOPS as a feature extractor operating inside a 
U-net architecture, achieving accuracy levels (mean F1 score of 0.869) comparable to a state-of-the-art 
deep learning architecture (U-net with Resnet50 as backbone) configured with 25.6 million parameters 
and 4.1 billion FLOPS which achieved a mean F1 score of 0.87. These promising results demonstrate that 
employing EfficientNet as the feature extractor in semantic segmentation on aerial ortho-imagery can be 
an effective strategy, in achieving higher performance results in terms of computational power, especially 
when running these networks on the edge. 

 
Keywords: Deep Learning, Supervised Image Segmentation, semantic segmentation, ortho-imagery, Deep 
convolutional neural network  

1 Introduction  

Over the past decade, advances in Machine Learning (ML) and in particular Deep Learning (DL) algorithms have 
resulted in significant advances in Computer Vision. One of the key applications is Semantic Segmentation which 
is used in a number of applications including; Robotic Localisation, Autonomous Driving, Scene Understanding 
and, building High-Definition Maps [Kemker et al., 2018].  

In terms of geospatial applications, unmanned aerial vehicles (UAVs) are playing an increasing role in data 
gathering and mapping our real world environments. These robotic aerial data gathering platforms are now 
commonly found across the globe, collecting large volumes of data that require automated processing such as 
feature extraction to be carried out on the fly. Such requirement demands both computationally inexpensive and 
high accuracy feature extraction techniques [Ammour et al., 2017]. 

Most common and well-known traditional techniques in computer vision like Support Vector Machines, 
[Waske and Benediktsson, 2007], and Random Forests, [Pal, 2005], often result in less accurate outputs compared 
to the DL techniques that produce significantly improved accuracy but at the expense of resources required to 
train and carry out subsequent inference [O’Mahony et al., 2020]. In this paper we investigate the potential for 
EfficientNet family, [Tan and Le, 2019], to help reduce this expense in extracting man-made features in UAV 
aerial imagery. We investigate this hypothesis using an U-Net architecture, [Ronneberger et al., 2015], with an 
EfficientNet-B0, [Tan and Le, 2019] feature extractor. To assess the performance of the resulting architecture we 
utilise the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark dataset [ISPRS, 
2016]. 

2 Prior Work 

 
Recent developments in aerial robotic data gathering platforms, such as UAVs, now enable the rapid capture of 
aerial imagery at higher spatial-temporal resolutions as well as lower costs. In parallel, emerging developments in 
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contemporary DL algorithms in automating the data processing and feature extraction has resulted in new data 
products and information services for applications including; urban planning, land cover classification, 
Emergency Response, etc. [Ammour et al. 2017].  

It is possible to generate an orthophoto from overlapping aerial imagery that is geometrically corrected 
(orthorectified) so it can be used to measure true distances and dimensions. The process of orthorectification 
enables various real-world phenomena and distortion such as topographic relief, lens distortion and camera 
orientation to be corrected [Habib et al., 2007].  

Semantic Segmentation is an important algorithm that can assign a class to each pixel of a given image 
where the classes are defined A Priori. Semantic Segmentation applied to ortho-imagery is very useful and 
important because of its ability to detect and categorise one or more classes in the ortho-image [Liu et al., 2018]. 
Traditional image segmentation methods include; Watershed, Graph Cuts and Random Forests which have been 
used to classify high-resolution aerial images [Meyer and Beucher, 1990; Boykov and Jolly, 2001; and Pal, 2005]. 
However, DL techniques involving convolutional neural networks have proven to be more efficient and effective 
in extracting features from images compared to these more traditional approaches [Deng et al., 2009]. DL methods 
perform well even for semantic segmentation due to their ability to automatically extract features. For example, in 
2015, there was a 20% relative improvement to 62.2% mean Intersection over Union (IoU) using a Fully 
Convolution Networks (FCNs based on the PASCAL VOC 2012 benchmark dataset compared to the state-of–the-
art techniques of that time [Long et al., 2015].  

There are many Neural Network architectures that utilise CNNs for semantic segmentation tasks e.g., U-net 
[Ronneberger et al., 2015], LinkNet [Chaurasia and Culurciello, 2017], Feature Pyramid Networks [Li et al., 
2019]. As an example, [Wu et al., 2018] uses U-net [Ronneberger et al., 2015] for automatically segmenting 
building features from aerial imagery. Similarly, [Boonpook, et al., 2018] uses SegNet [Vijay et al., 2016] to 
extract building features from UAV images for riverbank monitoring. One of the novelties of these architectures is 
their compatibility and adaptability with a range of feature extractors. For example, one can use VGG [Simonyan 
and Zisserman, 2015] as the feature extractor in a U-net architecture [Ronneberger et al., 2015] or use ResNet [He 
et al., 2016] inside a LinkNet [Chaurasia and Culurciello, 2017]. The performance of these networks completely 
depends on the performance of the feature extractor in combination with how the architecture combines these 
features to segment the objects under observation. More recently, ScasNet [Liu et al., 2018] which utilized Resnet 
[He et al., 2016] as a feature extractor, achieved one of the best results with an overall accuracy of 91.1% on the 
ISPRS Potsdam benchmark dataset [Liu et al., 2018]. With a more complex feature extractor is it possible to 
achieve higher performance with respect to accuracy in resulting object segmentation, but this also increases the 
number of parameters to train. This gives rise to computationally more expensive requirements since high-
performing DL techniques require relatively large volumes of training data to train models with a high number of 
parameters.  

In this paper, we investigate the potential for a more efficient and scalable Semantic Segmentation Neural 
Network architecture that allows a comparable level of performance to be achieved similar to the actual state-of-
art applied to ortho-imagery from the ISPRS Potsdam benchmark dataset. To this end, we employ a combination 
of a U-net architecture [Ronneberger et al., 2015], an EfficientNet [Tan and Le, 2019] feature extractor and 
focal/dice loss [Lin et al., 2020, Deng et al., 2018]. 

3 Technical Description 

The main drawback of the majority of CNNs are their tendency to down-scale or reduce the spatial resolution of 
the features along the depth of the network which is not ideal in a segmentation context. 

To overcome down-sampling of the spatial resolution, many Fully Convolutional Neural Networks have 
been suggested like Segnet [Vijay et al., 2016], U-net [Ronneberger et al., 2015]. We chose a U-net architecture 
with an EfficientNet-b0 as the feature extractor, after an initial assessment based on literature review, for this 
study.  

The U-Net architecture is a CNN widely used for Semantic Segmentation. The original network consists of 
an encoder path and a decoder path that gives the U-shaped architecture. The Encoder part is composed by 
repeated convolution layers, each followed by a rectified linear unit (ReLU) layer and a maximum pooling layer. 
The decoder part is composed by sequence of up-convolutions and concatenations.  
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Figure 1: Overall U-net architecture using EfficientNet-b0 

 
The U-net architecture readapted with the EfficientNet-B0 as the encoder is detailed in Figure 1. The 

EfficientNet is a family of Convolutional Neural Networks developed in the context of AutoML where the authors 
have investigated a possible solution for neural network (NN) scaling for efficiency [Tan and Le, 2019]. Tan and 
Le, [Tan and Le, 2019], created a first baseline EfficientNet-B0 inspired by a MnasNet and scaled up to the B7 
network using their new compound scaling method, optimizing both accuracy and FLOPS at the same time. As a 
result, the network is faster and smaller compared to the other major networks used based on the ImageNet 
benchmark dataset [Tan and Le, 2019]. Specifically, EfficentNet-B0 uses 4.9 times less parameters and 11 times 
less FLOPS compared to ResNet-50 while providing 77.1 % as Top-1 accuracy on ImageNet compared to 76.1% 
of ResNet-50 [He et al., 2016]. Figure 2 shows the EfficientNet-B0 architecture. 
 

 
Figure 2: Architecture of EfficientNet-B0 as feature extractor 

 
Along with the architecture, it also important to carefully select the loss function which will penalize the 

network for incorrect predictions and detections. Standard cross-entropy loss is calculated as the average of per-
pixel loss. This poses a huge issue when the number of foreground pixels are far less than the number of 
background pixels. Although, weighted cross entropy loss helps alleviate this problem, it does not result in a 
significant improvement. To overcome this issue, we used a combination of a focal and dice loss. While the focal 
loss helps in learning hard negative examples and addresses the issue of class imbalance, dice loss helps to learn 
better class boundaries [Lin et al., 2020, Deng et al., 2018].  
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The Dice Loss is defined by 
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where C is the total number of classes, N is the total number of pixels, )!($) is the predicted class of the pixel, 
*!($) is the ground truth class of the pixel. TP, FP and FN are respectively the true positives, false positives, false 
negatives of a particular class. The Focal Loss is defined by 
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The focusing parameter g was set to 2 and the weighting factor l was set to 0.25 in our experiment. Thus, the total 
loss is given by, 
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4 Experiments 

4.1 Implementation 
We implemented U-net architecture using Tensorflow 2.3.1 with CUDA 10.1 support. Training images are read 
on the fly and randomly augmented using Tensorflow data API. We did our performance tests using a graphics 
processing unit (GPU) NVIDIA GeForce GTX 1650 with 4 GB of GPU memory. 

4.2 Benchmark Dataset 
We applied and studied the performance of the architecture described in section 3 with the ISPRS Potsdam 
benchmark dataset [ISPRS, 2016]. This benchmark dataset contains 38 ortho-images of same size of 6000 x 6000 
pixels generated from cropping a larger orthophoto at a ground sampling distance (GSD) of 5 cm. Each ortho-
image in the dataset consist of 4 channels IRRGB (Infrared, Red, Green, Blue) and for each ortho-image, there is a 
corresponding Digital Surface Model (DSM), representing elevation and normalised DSM (nDSM) data. The 
ground truth labels are also provided for training purposes for 24 of these 38 ortho-images. An example of the 
dataset is detailed in Figure 3 where a ISPRS RGB patch is overlapped with the ground truth. The ground truth 
colour map used for ISPRS classes/objects is listed in Table 1. 
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Figure 3: Labels overlapped on a RGB ortho-image crop from ISPRS Potsdam dataset 

  
Colour Class 
White Impervious Surfaces 
Blue Buildings 
Cyan Low Vegetation 
Green Trees 
Yellow Car 

Red Clutter 

Table 1: ISPRS colour and class definition 

4.3 Training and Evaluation 
For the experiments, we pre-processed the raw ISPRS Potsdam dataset and generated 4681 patches of 512x512 
pixels each with the infrared (IR), red (R), green (G), and normalized digital surface model (nDSM) band. Every 
patch has the correlated mask in a different folder with the same patch name in .tif format. For training, we used 
an 80/20 split so, 80% of all the 4681 patches was used for train the model and the remaining 20% patches was 
used for validation purposes. Data was also normalized, and data augmentation was applied, which consisted of 
random rotation of 90°, vertical and horizontal flips with a probability of 0.5. We choose a batch size of 4 due to 
our memory constraints. We did not use the Transfer Learning technique because most of the common pre-trained 
weights are based on RGB images, but in this case, we have 4 channels corresponding to IR, RG and nDSM data. 
Hence, we initialized the network with Xavier initialization [Glorot and Bengio, 2010]. The initial learning rate 
(LR) was set to 0.001 with a learning rate scheduler that monitored the validation loss. The LR was set to decrease 
by a factor of 0.1 every 5 epochs if the validation loss doesn’t reduce. The minimum LR was set to 1e-15. The 
optimizer chosen was Adam [Kingma and Ba, 2015].  

We trained two models using the ISPRS Potsdam dataset and created a comparison table (Table 2) with the 
F1 score metric (2) per class and reporting the number of parameters and FLOPS required. All the models are 
based on the same U-net architecture but with a different feature extractor. We chose to compare EfficientNet B0 
with ResNet50 because these two architectures have comparable performances [Tan and Le, 2019] 

We assessed quantitative performance of the two models based on the F1 score applied to all the six classes 
as,  

 

+1 = 2 *5'&!6!27∗9'&344
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where, Precision and Recall are defined by: 
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4.4 Results and Analysis 
We generated predictions for each of the fourteen ortho-images contained in the ISPRS Potsdam test dataset and 
compared to the ground truth calculating the metrics for both architectures. We also produced qualitative results as 
shown in Figure 4 where we show the IRRG image, the ground truth, the prediction with Resnet50 and the 
prediction with EfficientNet-B0 based on an ortho-image from the ISPRS Potsdam test dataset. 

As seen from Table 2, EffientNet-b0 resulted in almost the same weighted F1 score as ResNet-50 but with 
4.9x less parameters and 11x less FLOPS. This resulted in comparable performance when comparing 
EfficientNet-b0 to ResNet-50 but with significantly less computational overhead.  

 
 

Architecture 
Num. of 

parameters 
FLOPS Weighted 

Mean F1 

F1-Scores 

Impervious 
Surfaces 

Buildings 
Low 

Vegetation 
Trees Car Clutter 

U-net + 
EfficientNet

-B0 
5.3M 0.39B 0.869 0.89 0.95 0.82 0.83 0.89 0.41 

U-net + 
ResNet50 

25.6M 4.1B 0.87 0.89 0.95 0.82 0.82 0.88 0.45 

Table 2: Model comparison 
 

 
Figure 4: Qualitative comparison side by side of the inference from the models on the ISPRS Potsdam test set. 
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5 Conclusions 

In this paper, we investigated a more efficient Neural Network architecture that can achieve state-of-art 
performance on Semantic Segmentation applied to ortho-imagery, captured using UAVs. We reviewed a Neural 
Network based on a U-net architecture but modifying the features extractor with the new EfficientNet-B0. We 
were not interested in accuracy alone, but also examining the possibility of reducing the computational power 
required by the common architecture ResNet50. Initial results are promising and scalable. Further experimentation 
could be conducted on testing and evaluating the robustness and versatility of these architectures using different 
datasets and comparing the results also with other well-known Semantic Segmentation architectures. 
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Abstract

The Ki-67 protein is associated with cell proliferation and is a clinical marker for breast cancer tumour
aggressiveness. The percentage of immunopositive cells present in a histological image stained for Ki-67
expression informs the proliferation index quantifying tumour aggressiveness. This calculation is frequently
carried out through manual assessment that is time consuming and susceptible to human error. Automated
image analysis tools for Ki-67 breast cancer images may have a significant impact if they could be in-
tegrated in to clinical and digital pathology workflows by reducing workload for pathologists, as well as
improving efficiency and accuracy. This work presents the development of a deep learning based model for
automated calculation of Ki-67 proliferation scores from stained histological images. The resulting compu-
tational model predicts cell types (immunopositive vs immunonegative) with 96% accuracy, the Ki-67 index
category with 88% accuracy and the Ki-67 index with lower RMSE than the state of the art models. The
predicted mask from the model provides a transparent explanation of the computational decision making.
Moreover, the computational model is hosted on a cloud platform and can be utilised through a mobile ap-
plication designed for this investigation. The proof-of-concept mobile application has the potential to make
an impact in many communities, especially in low and middle income countries where there are currently
insufficient resources, namely a lack of expensive digital scanners, to support digital pathology in the fields
of medicine and education.

Keywords: Deep learning, image segmentation, Ki-67 proliferation score, mobile technology, cloud computing

1 Introduction

In recent years, the Ki-67 protein has been investigated as a clinical marker for breast cancer tumour aggres-
siveness [Yerushalmi et al., 2010, Inwald et al., 2013]. The biomarker is a nuclear protein associated with cell
proliferation; the increase in the number of cells as a result of cell growth and division. Pathologists use scor-
ing systems to estimate a proliferation index; low (<10%), borderline (10-20%), and high (>20%). A higher
proliferation index indicates that more cells are undergoing cell division, which can signify a more aggressive
tumour.

Currently, there are several challenges incorporating automated Ki-67 proliferation index measurements in
to clinical and digital pathology workflows without using a digital scanner. Measuring the proliferation index
manually is time consuming and sensitive to variance. This variance could be due to differences in staining
protocols, digitisation equipment, staining compounds or slide preparation, which can create variabilities in

*richard.gault@qub.ac.uk
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image quality and colour across datasets. The cell nuclei are also subject to variance in terms of structure,
shape, colour and intensity [Joseph et al., 2019]. Diagnostics from histopathology images usually rely on a
visual assessment of the cell slides by a pathologist, which can imply an inherent element of interpretation with
consequent subjectivity and possible human error. This manual process can be time-consuming and susceptible
to human error, there is a motivation to introduce computational methods to encode the expertise of the decision
making process.

Logistically, scanners required for digitising slides are expensive and don’t offer portability. Advances
in mobile phone camera technology have shown the capability to take satisfactory resolution images of mi-
croscopy cell slides. [Hernández-Neuta et al., 2019] acknowledge that the image sensors within a smartphone’s
camera module are sensitive enough for many diagnostically relevant applications. There is the potential for
the adaptation of smartphones as imaging read-out platforms that could be used for on-site image acquisition,
real-time analysis, management of the generated results at the user’s convenience, and data transfer from the
site of detection to other healthcare professionals.

This highlights an opportunity for digital pathology tools (and digital analysis) to be shared with the world
through mobile devices, thanks to the portability and technological features they offer. Not only would this
have a positive impact in the practice of pathology, but it would particularly benefit communities in low and
middle income countries, where the current option of using an expensive scanner is not feasible. Furthermore,
connecting global experts through a common platform that facilitates ease of communication and knowledge
transfer would support the digital pathology community as a whole but specifically those working in low and
middle income countries.

This paper presents a novel investigation in to the automated Ki-67 proliferation scoring of histological
images. This work also presents the development of a prototype mobile application that would enable multi-
ple users to interact on a single platform and analyse images stored on or captured by the device. Section 2
will outline the current research in the area of automated Ki-67 proliferation scoring. Section 3 will outline
the proposed methodology and computational system along with the experimental protocols used to evalu-
ate the computational model. Section 4 provides an overview of the results before the findings of this work
are discussed in Section 5 in the context of existing work. The conclusion (Section 6) summarises the main
contributions of this work and highlights future opportunities for research.

2 Background

The advances and success of deep learning methodologies in the area of image processing combined with the
quantity and quality of image data in the digital pathology domain has led to a surge in the development of deep
learning solutions to support digital pathology analysis. In particular in the area of Ki-67 proliferation scoring,
a number of approaches have been considered.

Proliferation Tumour Marker Network (PTM-NET) [Joseph et al., 2019] is a four layer convolutional neu-
ral network (CNN) that performs instance segmentation on cells before identifying Ki-67 immunopositivity
in supplementary analysis. PTM-NET predicts immunopositive and immunonegative cells with an accuracy
of 70% and 88% respectively. The performance of the algorithm in calculating the proliferation index is not
presented but the work shows how a relatively simple CNN can be used to provide reasonable accuracy in identi-
fying Ki-67 expression. A more complex solution using a similar aproach is PathoNet [Negahbani et al., 2021]
which utilises U-Net [Ronneberger et al., 2015] as the foundation for its modelling framework with the first
layer and convolutional layers replaced by a residual dilated inception module that reduces model complexity.
The model predicts Ki-67 immunopositive and immunonegative cells with 85% and 75% accuracy respectively.
Ki-67 proliferation index scoring was achieved with an root-mean-squared error (RMSE) of 0.62 which was in
keeping with alternate benchmark models. Cell segmentation in the predicted masks is carried out using the
Watershed algorithm [Atta-Fosu et al., 2016]. The findings highlight the potential for U-net to form the basis
of modelling efforts in this area, although the variance in the staining and imaging of the samples may result in
the cell segmentation algorithm performing to a lower standard than desired.
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Instead of taking an instance segmentation approach to cell detection, [Geread et al., 2019] proposed a novel
unsupervised colour separation model before distinguishing cells through post processing and nuclei detection
algorithms. The model achieved a classification accuracy of 92.5%. This unsupervised approach avoids human
error in the subjective labelling and ground truth annotation of slides. However, it is difficult to say how well
the colour separation model would generalise across laboratories where staining protocols can lead to very
different colour profiles in images. It is desirable in the current study to prioritise generalisability over absolute
performance on a given dataset due to the aims to support digital pathology analysis in low and middle income
countries that would be spread across different laboratories.

3 Methodology and experimentation

This section will first outline in Section 3.1 the development of the computational model for detecting Ki-67
expression and the dataset used in this endeavour. The mobile application that was simultaneously developed
to house the computational analysis is outlined in Section 3.2.

3.1 Computational modelling

3.1.1 Data

Figure 1: (a) shows an example raw image and (b)
shows the resultant ground truth mask generated from
the JSON annotation.

Annotated cell slides of microscopic biopsy images of
malignant breast tumours containing Ki-67 protein ex-
pression were obtained from [Negahbani et al., 2021].
Each raw image is downsized from a starting dimension
of 1228£1228 to a final dimension of 256£256. Seg-
mentation masks for each image are generated using the
OpenCV-Python library. An example of the raw images
and its corresponding mask are illustrated in Figure 1.
The staining protocol results in cells that express the
Ki-67 protein appearing as a dark brown colour (Figure
1 (a)). Adaptive Gaussian thresholding is first applied
to the images to separate cells from the background and
create a binary image with background pixels in black and cell pixels in grey. This image is then used to draw
contours around each cell. Ground-truth annotations are contained in a corresponding JSON file comprised of
co-ordinates for the annotated nuclei, as well as their classification (Ki-67 immunopositive or immunonega-
tive). The centre position of each contour is compared with the JSON file to locate all the cells identified as
being immunopositive. Any matches have their pixels changed from grey to white (Figure 1 (b)). This forms
the ground truth masks for training of the deep learning model.

3.1.2 Experimental overview and model outline

The instance segmentation in this study is achieved through the application of transferred learning on the U-Net
model [Ronneberger et al., 2015], with a pretrained ResNet encoder (specifically ResNet50 [He et al., 2016])
and ImageNet [Deng et al., 2009] weights developed in PyTorch (version 1.8.1). The optimiser is Adam
[Kingma and Ba, 2014] and the learning rate is set to 0.001. All weights are considered trainable. The model
is trained for 10 epochs. Preliminary analysis found that the model plateaued at sufficient accuracy around 9
epochs. The train, validation and test split of data is 70%-15%-15% respectively. To perform model evaluation
through a variety of metrics, the mask is decoded to establish the number of Ki-67 immunopositive and im-
munonegative cells. This is carried out in a reverse process to the JSON-to-mask encoding used in the ground-
truth annotations (Section 3.1.1). Gaussian thresholding is applied to the mask and contours are extracted before
the label for each cell is documented for use in the evaluation process. A copy of the model implementation can
be found: https://github.com/richardgault/Automated-Ki-67-proliferation-scoring.
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3.2 Mobile application and cloud hosting

Figure 2: Illustration of the software architecture

To support end-user access a mobile application has
been implemented which is available on both An-
droid and iOS platforms. The application communi-
cates to services, such as the machine learning plat-
form which performs the analysis, through HTTP re-
quests made over the Internet. The services them-
selves including the machine learning elements and
database storage are packaged as microservice con-
tainers using the industry standard Docker which al-
lows them to be easily run on any cloud hosting provider. For the purposes of our implementation they are
deployed using a kubernetes hosting cluster. The services provide an Application Programming Interface (API)
to which the application can connect and make requests to process, store, or retrieve data. The generalised
architecture is shown in Figure 2. Such an approach allows easy remote access from any device with a net-
work connection including cellular data and also offers the potential for other implementations beyond our
application to make direct remote use of the hosted services, i.e. a third party could integrate our cloud based
processing in to another platform for gathering images.

4 Results

4.1 Evaluation of model performance

Figure 3: Example of the predicted mask and heat map relative to the raw image and ground truth mask.

Figure 3 shows an illustration of the predicted mask and heatmap produced by the model relative to
the original image and its ground truth mask. Table 1 provides an overview of the training, validation and

Table 1: Evaluation of Model performance

Dataset Accuracy Precision Recall f1-score IoU
Train 0.9575 0.9371 0.9353 0.9362 0.8813

Validation 0.9584 0.9385 0.9367 0.9376 0.8901
Test 0.9609 0.9421 0.9403 0.9412 0.8961

test performances of the model. The
performance is consistently high and
comparable across all datasets and
measures. It is notable that the
predicted mask generally estimates
cells that were completely solid as
desired whereas the ground truth
mask sometimes included "background" (i.e. black) pixels in the middle of some of the immunonegative
cells (shown in grey in the masks of Figure 3). This is likely an artifact introduced by the mask generation
approach that was outlined in Section 3.1.1 when the light coloured portions of cells have been mislabelled as
background following the adaptive Gaussian thresholding process. These mismatches between the ground truth
and predicted masks result in reduced Intersection over Union (IoU) scores for these isolated regions despite
the prediction being meaningful and appropriate. This is important to remember when considering the IoU
score.

Proceedings of the 23rd Irish Machine Vision and Image Processing conference IMVIP 2021

September 2-3 , 2021, DCU 36 978-0-9934207-6-4



Table 2: Comparison of model performance

Model RMSE
Mod. DeepLabv3-Mobilenetv2 0.050

Mod.DeepLabv3-Xception 0.063
Mod. FCRN-A 0.067
Mod. FCRN-B 0.069

PathoNet 0.062
Proposed model 0.045

The Ki-67 index score is calculated as the num-
ber of immunopositive cells relative to the total
number of cells in the sample. Previous studies
[Negahbani et al., 2021] compared the performance
of existing models in their ability to accurately cal-
culate the Ki-67 index of a sample. These figures are
presented in Table 2 alongside the model presented in
this work. The results show that the proposed mod-
elling approach has performed slightly better than the existing models. However, strong conclusions should not
be drawn from this table as the test set used in the current analysis is likely to be different than that used in
[Negahbani et al., 2021] despite using the same data; also, previous models were trained on 3-class classifica-
tion (immunopositive vs immunonegative vs lymphocyte) which extends the binary classification considered in
this work.

For diagnostic purposes and to inform prognosis, the Ki-67 index is categorised in to low (<10%), borderline
(10-20%) and high (>20%). The model was able to predict the correct category with 88% accuracy. Table 3
shows the confusion matrix for the category prediction and Table 4 provides the associated metrics for the
model’s performance. It is clear from Tables 3 and 4 that the model performs particularly well in the extreme
cases of low and high Ki-67 expression. The accuracy of the category prediction is lower than the accuracy
of the individual cell prediction because misclassification of an individual cell has relatively little impact given
the high number of cells the model considers. Each image contains multiple cell types and typically a large
number of cells. Therefore the impact of misclassifying an image in to the correct category has a greater impact
on the results since the total number of images is vastly less than the total number of cells, which the metrics in
Table 1 consider. The results show that the model can accurately identify cells, classify the presence of Ki-67
expression and accurately categorise the Ki-67 index in to an appropriate category for diagnosis and prognosis.

Table 3: Confusion matrix for Ki-67 category

Predicted
<10% 10-20% >20%

Actual
<10% 270 25 2

10-20% 9 54 6
>20% 0 4 25

Table 4: Ki-67 Index metrics per category

Category precision recall f1-score
<10% 0.968 0.909 0.937

10-20% 0.651 0.783 0.711
>20% 0.758 0.862 0.806

4.2 Evaluation of the Mobile Application

The mobile application is a multi-user system authentication to ensure access control. The user interface is
designed with a consistent dark mode colour scheme to improve visual ergonomics by reducing user eye strain,
adjusting brightness according to lighting conditions and facilitating screen use in dark environments – all while
conserving battery power by reducing the use of light pixels. Intuitive and minimal functionality is presented
to the user to support ease of use.

A new image can be taken using the mobile device camera or an existing one can be selected from storage
(Figure 4 (a)). Multiple images can be selected at one time to enable batch analysis. The image is then displayed
on the user interface (Figure 4 (b)) and the button to analyse the image is enabled. Once pressed, all images to be
analysed are sent as an image stream in an HTTP POST multi-part form request to the machine learning micro-
service for analysis. The JSON response is returned to the mobile application, where it is then deserialized to
obtain values such as the number of immunonegative cells, number of immunopositive cells and consequently
the Ki-67 proliferation index as a percentage. The results are returned to the user nearly instantaneously when
there is strong internet connectivity. Asynchronous communication handling of the mobile application means
that normal operation of the mobile application is undisturbed if there is an unforeseen delay in the returning
of results.

A predicted mask is also returned with the model predictions providing a visual result for transparency and
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(b)

(a) (c)

(d)

(e)

(f)

Figure 4: Screen shots of the mobile’s analyse image functionality: (a) Images imported by taking a new image
with the device’s camera or from file (individually or as a batch). Images can be processed by selecting “RUN".
(b) Batches of images can be previewed and removed from the user’s selection as desired. (c) If the user wishes
to first provide a blind review of the results they can toggle the result viewer to hide or show the modelling
results. (d) Predicted masks are displayed along with (e) key information regarding the Ki-67 proliferation
index. (f) The results can now be saved (function now enabled) for future records. Optionally, the image(s) can
be reviewed by the current user and/or assigned to another user for a second opinion.

traceability of the model’s decision making for the pathologist to examine as well as the Ki-67 statistics (Figure
4 (d) and (e) respectively). The application has been designed to facilitate both single and batch image analysis.
Results can be saved to the database (Figure 4 (f)). The user running the analysis can assign the result to another
user in their favourite contacts list (determined by the user), so that they can get a second opinion.

The mobile application is evaluated through automated testing. The NUnit framework (Version 3.12.0) is
used for the view-model unit tests. Tests have been written using the Arrange, Act, Assert (AAA) pattern,
which involves initialising objects and setting data values, invoking the method under test with the arranged
parameters and verifying that it behaves as expected. Unit tests for the mobile application view models had 71%
coverage using Rider IDE from JetBrains with all tests passing. Moq (Version 4.16.10) is used as a mocking
framework to emulate responses from interfaces, which is done during the Arrange part of the tests. Some of
the classes used in the code implementation do not inherit interfaces and therefore cannot be mocked. This
meant that some of the code was not testable, but the code coverage shows that a majority of the logic of the
mobile application code for the view models was still able to be tested. The fact that all tests passed verifies that
the logic of the code functions successfully and as expected. Integration tests for checking the connection to
each request handler were implemented and all successfully passed. A YAML file is used to configure GitLab
Continuous Integration/Continuous Deployment. It allows the database microservice to be built and tested
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automatically each time a code change is pushed to the codebase. This verified that the microservice could
receive HTTP requests.

5 Discussion

The developed computational model for automated Ki-67 proliferation scoring is designed to improve analysis
workflows in digital pathology by providing a proof-of-concept solution that can be developed further. The
model is embedded in a computational system that allows users to intuitively and quickly run Ki-67 analysis
through a mobile application. The cloud based computation enables scalability and utilisation of computational
resources that would not be available locally on the mobile device.

The computational model has been able to correctly classify 96% of cells with very strong coincidence with
the ground-truth as captured by the IoU score of 0.89. The quality of the predicted masks provides pathologists
with confidence, transparency and traceability in the computational decision making process. Future work is
needed to extend the model’s exposure to more datasets collected from different international laboratories and
exposure to other tumour types than the breast cancer samples considered in the present work.

The mobile application has the potential to make an impact in many communities, especially low and
middle income countries where there are currently insufficient resources, namely expensive digital scanners, to
support digital pathology in the fields of medicine and education. Microscope mounts for mobile devices are
available that allow the device’s camera to be positioned at the lens of the microscope. This enables the user to
capture and analyse the field of view through the application. In terms of supporting low and middle income
countries, the multi-user mobile application provides the baseline infrastructure for further development that
make it feasible to connect global experts if they are using the platform. The authentication system implemented
means that existing email and authentication methods are retained and the application can be easily scaled
to a large audience. The second reviewer functionality implemented in the app provides the framework to
connect pathologists and researchers with global experts in their designated area for further opinions. The
cloud hosted analysis module also supports scalability and easy redeployment. There is also the potential
for the system to address challenges of educating medical students in digital pathology that were highlighted
in [Fontelo et al., 2012]. For example, the computational model could be used to test a student’s annotating
skills by comparing the model’s predicted mask against the student’s annotations and use the model’s mask as
feedback for the student in both a qualitative and quantitative way.

Future work for this system entails the refinement of the mobile application to enable enriched user features,
such as institutional/company specific areas, and complete automated and user testing. Although the results of
the Ki-67 prediction area high in all areas and the IoU of the predicted masks is also high, the computational
model needs to be evaluated on independent datasets from other sources. Staining and imaging protocols vary
around the world leading to diverse colour profiles and image quality. Consequently, further refinement will
likely be needed to ensure the model is robust before the model is used in real-world applications.

6 Conclusion

The proof of concept mobile application presented in this work provides accurate identification of Ki-67 im-
munopositive and immunonegative cells in histopathology images. The model can accurately support a pathol-
ogist or researcher in the scoring of Ki-67 proliferation as evidenced through the high performance in individual
cell classification, IoU score and KI-67 index categorisation. The computational system efficiently produces
information that is transparent and essential in many standard digital pathology analysis pipelines. Extensions
of this work could provide sufficient impact in low and middle income countries where state-of-the-art scan-
ning and computational analysis resources are not widely available. This cloud based system paves the way for
scalable and global solutions that could connect analysts with leading experts using the platform. Future work
is planned to enhance the functionality of the mobile system and refine the computational modelling to enable
its generalisation and robustness to variation across centres.
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Abstract

Stroke is the second largest cause of death and disability-adjusted life-years in the world. Minimising
the time to treatment for patients is extremely important. Facial weakness is a core symptom that medical
professionals consider when identifying cases of stroke. This is a subjective assessment of asymmetry in
the face. Due to this subjectivity, it is challenging to articulate the decision making process of a neurologist.
This work presents novel computational approaches to accurately model the detection of pathological facial
weakness from images of people with and without pathological facial weakness. Instance segmentation
is first used to isolate key facial features that inform the decision making of a fuzzy inference system.
This proof of concept study shows the feasibility of automated feature extraction and the effectiveness of
fuzzy inference systems in identifying facial weakness. Furthermore, the transparent nature of the instance
segmentation model and the fuzzy rule base has enabled the model to be compared against the real-world
decision-making process of a neurologist. The findings motivate future investigations to develop fuzzy
inference systems to detect other common deficits of stroke including limb weakness and drift as well as
dysarthria.

Keywords: Stroke, facial weakness, instance segmentation, fuzzy inference

1 Introduction

In the most recent Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), stroke was the 2nd largest
cause of death globally and contributed to the 2nd highest disability-adjusted life-years (DALYs) worldwide
[Johnson et al., 2019]. Although the age-standardised rate of deaths from stroke have declined since 1990,
treatment and post-stroke care is a significant economic burden with the treatment cost for severe stroke being
more that double that required for a mild stroke [Roger et al., 2011]. It is anticipated to have an even greater
global impact with the ageing population [Katan and Luft, 2018]. Ideally, the number and severity of cases
would be managed by preventative measures however the high burden of stroke globally suggests that such
strategies are not widely used or are ineffective. Consequently, there is a need to optimize the treatment of
acute stroke in order to reduce disability and cost.

Stroke therapy can be highly effective if administered early. Reducing the time to treatment by as little as
fifteen minutes can save one month of disability-free life [Meretoja et al., 2014]. This time-sensitive nature of
treatment efficacy is perhaps best expressed in the neurologists’ adage “time is brain”. Unfortunately, 1/3 of
patients have a significant delay in treatment [Kamal et al., 2017]. A major contributing factor to this delay is
the failure of patients, first-responders, and paramedics to recognize signs of stroke [Lachkhem et al., 2018].
Stroke signs are patterns of neurological function used by both medical professionals and the general pub-
lic to identify stroke. Some signs can be easily identified by most people while other signs are difficult to
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†richard.gault@qub.ac.uk
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detect without extensive training [Brandler et al., 2014]. The three features most commonly used to identify
stroke in the field are unilateral or one-sided facial weakness, unilateral arm weakness, and slurred speech
[Hurwitz et al., 2005]. Brandler et al. [2014] found that with simple instructions untrained individuals rec-
ognized over 95% of cases of arm weakness and slurred speech. In contrast, only 74% of facial weakness
cases were correctly detected. This discrepancy may be due to the fact that people without any neurolog-
ical disease often have some degree of facial asymmetry at rest and while smiling. Learning the proper
threshold of normal vs abnormal facial asymmetry likely requires specialized training. Similarly, paramedics
were found to correctly classify facial weakness only 82% of the time [Nor et al., 2004]. Even among physi-
cians with neurologic training, the inter-rater reliability for certain components of the neurologic exam is less
than 60% [Hansen et al., 1994], and thus detection of common signs of stroke in the field varies substantially
[Nor et al., 2004, Josephson et al., 2006, Meyer and Lyden, 2009]. Both facial weakness and dysarthria have
poor inter-rater reliability [Josephson et al., 2006, Meyer and Lyden, 2009]. Unfortunately, such clinical exper-
tise is scarce and often not immediately accessible at the time that a stroke occurs. As a result, many patients
either fail to receive timely treatment or are ineligible for acute stroke therapy.

A technology that can accurately detect abnormal facial asymmetry could support the diagnostic capabil-
ities of non-experts and reduce delays in stroke treatment. Two major challenges of identifying pathological
facial weakness are that 1) the decision-making process is subjective and 2) the categories of “normal” and
“abnormal” are ambiguous. To deal with these challenges, we propose implementing a fuzzy inference system
(FIS) that specialises in handling vague or imprecise inputs. Additionally, the fuzzy rule base can be interpreted
by humans, allowing for direct comparison with human decision making. This work will investigate whether a
FIS can be used to detect the presence or absence of pathological facial weakness.

Section 2 will outline the models considered and Section 3 of this paper will provide an outline of the
datasets used in this investigation. Section 4 will provide an outline of the results which are discussed in more
detail in Section 5. A final conclusion and summary of this investigation is provided in Section 6.

2 Methods

The proposed system will automatically extract facial features using instance segmentation and then predict the
presence or absence of facial weakness. Details of each stage are presented in Sections 2.1 and 2.2 respectively.

2.1 Instance Segmentation of Facial Features

Figure 1: Example annotation of the ROI.

Three facial regions widely used by specialists when rating
facial weakness, namely the mouth, eye and nasolabial fold
(NLF) (Figure 1), are considered. The left and right portions
of each region are considered independently resulting in 6 re-
gions of interest (ROI) for each person. Mask R-CNN is used
as the basis of the instance segmentation of the facial features
[He et al., 2017]. The model is trained through transfer learn-
ing using the datasets outlined in Section 3 with a base model
of ResNet101 [He et al., 2016] using the pretrained weights de-
rived from training with the MS COCO dataset [Lin et al., 2014].
The implementation was conducted in Google Colab using
Python 3.7, a single Tesla K80 GPU, learning rate of 0.001, a batch size of 2, a minimum detection confi-
dence of 0.9 and 150 training epochs. The goal of the instance segmentation component of the system is to
accurately extract the facial features ROI to aid with the subsequent classification of whether facial weakness
is present or not present. When more than one instance of a region is predicted, only the predicted region with
the highest confidence value is considered as the model’s prediction since all images should have only one of
each region. The model’s performance will be evaluated using the Intersection over Union (IoU) metric.
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In this investigation the aim is to detect facial weakness in a binary manner (weakness vs no weak-
ness) in keeping with the Cincinnati Prehospital Stroke Scale (CPSS) [Kothari et al., 1999]. When facial
weakness is present it is anticipated that there will be asymmetry in the facial structure in some or all of
the ROI. The degree of facial symmetry is captured by the ratio (RE ,RN ,RM ) of the number of pixels in
the corresponding left and right regions for the eyes, NLFs and mouth by Equation 1,where PXl and PXr

RX =
min(PXl ,PXr )

max(PXl ,PXr )
(1)

are the number of pixels in the regions on the left and right side respectively and
X 2 {E , N , M }. The ratio is bound in the range [0,1] with perfect symmetry having
a value of 1 and complete asymmetry being 0. The eye, NLF and mouth ratios
are fed in to the decision making component of the system.

2.2 Detecting facial weakness through Fuzzy Inference

A Mamdani style FIS is implemented in Python using the skfuzzy package to model the decision making of
neurologists for facial weakness detection. The membership functions and fuzzy rules are prescribed by the
investigator and the resultant model referred to as the Prescribed Fuzzy Inference System (PFIS). For each
input ratio (eye, NLF and mouth) the model has three membership functions representing “low”, “medium”
and “high” symmetry. The “medium” (or Med) membership function for each input is a Gaussian centred
around 0.76, 0.55 and 0.63 for the eye, NLF and mouth inputs respectively and with a 0.8 standard deviation.
The “low” and “high” membership functions are trapezoidal in nature and are respectively maximum (1) at 1
standard deviation below and above the Gaussian centred points mentioned above. The two output variables
represent the presence (1) or absence (0) of weakness. The consequent fuzzy sets have Sigmoid membership
functions that peaked at 0 and 1 respectively. These parameters for the FIS were prescribed heuristically.

Table 1: AND rules from the PFIS
MF RE MF RN MF RM Weakness

Low Low Low 1
Med Med Med 1
High High High 0
High High Med 0
High Med High 0
High Med Med 0
Med High High 0
Med High Med 0
Med Med High 0

The Fuzzy rule base consists of 10 rules. A single rule used OR
logic to specify that “low” symmetry in any of the inputs implies
there is weakness present. All remaining 9 rules are detailed in
Table 1 and use AND logic to combine the membership func-
tions for the inputs RE , RN and RM corresponding to the eye,
mouth and NLF ratios respectively.

The PFIS is benchmarked against a Multi-layer perceptron
(MLP) with 10 neurons in the hidden layer and trained for 1000
epochs with a batch size of 200 using binary cross-enthropy as a
loss function and the Adam Optimiser. The outputs of the PFIS
and MLP are rounded to the nearest integer to obtain a classifi-
cation prediction of weakness (1) or no weakness (0).

3 Dataset

Two datasets are used in this study; the FEI face database and a facial weakness dataset. Both datasets contain
images of individual faces. The ground truth masks for the six ROI were annotated using the VGG Annotator
Tool [Dutta et al., 2016, Dutta and Zisserman, 2019]. All annotations were conducted by someone with no
clinical experience to ensure that unconscious bias was not introduced in images where facial weakness was
present. The annotator was advised where each region was located in a sample of images and completed
annotations were reviewed for quality control. Each dataset and it’s usage in this work will be detailed in
Sections 3.1 and 3.2.

3.1 FEI face database

The full FEI database contains 200 individuals photographed at various facial angles, expressions and contrast
[do Amaral and Thomaz, 2008]. Only the 200 fully front facing images are used as faces turned to one side
often have a restricted view of the ROI leading to an apparent facial asymmetry without there actually being
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asymmetry present. Given the potential use case for this system to detect facial weakness with a first responder
it is a fair pre-condition to request the model to only make decisions when the person is facing straight on in
the picture. This dataset is used to train the Mask R-CNN. To increase the quantity and diversity of the training
dataset, augmentations were applied to the images. All images were converted to greyscale and shifted a random
amount of pixels in the vertical and horizontal direction and 98% of the time an additional augmentation was
applied to the image quality (blurring, contrast adjustment, etc). All augmentations were carried out using the
imgaug Python package.

3.2 Weakness Dataset

The facial weakness dataset contains 203 open-sourced images containing faces with possible signs of weakness
and no signs of weakness. The precise pathology of the cases of apparent facial weakness are not known but
likely contain cases of stroke as well as other conditions with similar symptoms, e.g. Bell’s Palsy. The people
in the images vary in ethnicity, age, and sex. Three board-certified neurologists were asked to blindly rate
the images from 1 (very likely no weakness is present) through to 5 (very likely weakness is present). The
ground truth is taken to be the modal score of the three experts. From these ratings images were grouped in
to no weakness (<3), weakness (>3) or in determinant (=3 or split decision). Two images were categorised as
in determinant and were omitted from the remainder of the analysis. In total, 90 images were classed as no
weakness and 111 as weakness. Somes images had to be removed from the analysis as ROIs were obscured by
hair or facial angle. This left 80 no weakness images and 107 weakness images (47 left sided, 60 right sided).
This dataset is used to test the instance segmentation model and the PFIS. Additionally, 80% of the ground truth
masks are used to calculate the symmetry ratios (Equation 1) for each region and subsequently train the MLP
in the decision making task. The remaining 20% of images are used for testing the MLP with classes evenly
balanced in the train/test split.

4 Experimentation and Results

A number of experiments are proposed to evaluate each component of the system (instance segmentation and
decision making) as well as the combined system as a whole. In this section each experiment will be outlined
and the results presented immediately thereafter.

4.1 Experiment 1:Analysis of Instance Segmentation

Transfer learning is applied to the Mask R-CNN model described in Section 2.1 using the 200 “healthy" images
from the FEI dataset. The model is then evaluated using the Facial weakness dataset. Note that the model has
only been trained on the ROI (eyes, NLFs, mouth) and has not previously been exposed to cases where the
regions are asymmetric.

Table 2 shows the IoU for the facial weakness dataset when considering the images with no weakness, and
images with weakness independently. Mask R-CNN was able to accurately identify the eye and mouth regions
in cases with no weakness but had difficulty distinguishing the NLFs in all cases. The model particularly
struggled in identifying the mouth regions when weakness is present. This is likely caused by a distortion in
the shape of the mouth when weakness is present, which is significantly different from samples in the training
dataset. However, the IoU is not a perfect evaluation on the usefulness of the Mask R-CNN in identifying facial
features. An illustration of the strong predictive mask can be seen in Figure 2 (a). The ROI, in particular the
NLF, is not always clearly defined. Indeed in the case of Figure 2 (b) the NLF predicted mask only partially
overlaps with the ground truth mask. However, on closer inspection the predicted NLFs are meaningful and
may be in agreement with a different annotator. Future studies should consider multi-annotators and inter-rater
variability to get a more robust ground truth definition.
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Table 2: IoU results for Mask R-CNN in each region of interest
Data Left Eye Right Eye Left NLF Right NLF Left Mouth Right Mouth

Images: No weakness 0.74 0.73 0.54 0.54 0.77 0.74
Images: Right weakness 0.71 0.73 0.55 0.50 0.55 0.57
Images: Left weakness 0.71 0.69 0.49 0.54 0.55 0.53

Raw image Predicted and ground truth masks(b)(a) Raw image Predicted and ground truth masks

Figure 2: Illustration of the Mask R-CNN’s mask prediction (red) compared with the ground truth (green) in
(a) a case of no weakness and (b) a case of weakness.

4.2 Experiment 2: Detecting facial weakness using PFIS

The ability of the PFIS to accurately classify facial weakness is carried out in two stages. Firstly, the PFIS
will receive inputs from the Mask R-CNN output from Experiment 1 and will make a prediction for each
image. Secondly, to achieve a true analysis of the PFIS’ ability to act as a decision making system without
inheriting errors from Mask R-CNN, the ground truth masks for the facial weakness dataset are used to derive
the symmetric ratios (Equation 1) for the three input regions and the performance of the PFIS is evaluated. In
both cases the PFIS will aim to classify an image as either having weakness or no weakness.

The PFIS predicted all cases perfectly when making the decision based on ground truth masks. When
using the predicted masks from the Mask R-CNN, the model was 79% accurate and had a precision of 83%,
sensitivity of 89% and specificity of 75%. The results show that the PFIS is completely effective in its decision
making when supplied with accurate features. Even though the Mask R-CNN provided imperfect features the
PFIS was still able to achieve a very strong performance as sometimes this imperfection resulted in a desirable
outcome. Given the significance of the facial weakness decision being made it is important that good fortune
is not relied upon to make the decision and thus the results further motivate the need to enhance the instance
segmentation component of the system.

4.3 Experiment 3: Detecting facial weakness using MLP

The MLP is used as a data-driven alternative to the PFIS and will be evaluated in an analogous setup to Ex-
periment 2. The MLP obtained an accuracy of 92%, a precision of 100%, sensitivity of 90% and specificity of
100% when making a decision based on the ground truth masks while it had an accuracy of 83%, a precision
of 100%, sensitivity of 81% and specificity of 100% when making a decision based on the predicted masks
from the Mask R-CNN. The results show that the PFIS performs better when using the ground truth masks to
inform the input data. Furthermore, when predictive masks are used, the PFIS will tend to be over cautious in
its prediction compared with the MLP that would tend to have more false-negatives than false-positives. In the
context of identifying potential facial weakness it is more desirable to favour the PFIS which is more likely to
highlight potential cases for further consideration than overlook cases of facial weakness.
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4.4 Experiment 4:Explainability of the PFIS

Unlike the black box decision making of the MLP, the PFIS contains semantically meaningful information and
interpretable fuzzy rules. This experiment aims to evaluate the degree of agreement between the PFIS and an
experienced neurologist to ascertain whether or not the PFIS encodes the decision making of the expert. An
experienced neurologist was asked to comment on the relevance of the membership functions and inference
rules to clinical decision making. A sample of images with the 5 highest membership values to the membership
functions “low”, “medium” and “high” in each of the regions were blindly presented to the neurologist. The spe-
cialist was asked to rate the appropriateness of a number of statements describing each feature on a scale from
0-100 which took the format: “To what degree would you agree that the symmetry of the [eyes/mouth/NLF]
is [high/medium/low]?”. This value was scaled to the unit interval [0,1] for comparison with the membership
value of each input. This value will be referred to as the descriptor agreement value. Additionally, the specialist
was asked to comment on the relevance of each of the inference rules from the PFIS to the real world decision
making process. This qualitative analysis is designed to see how comparable the PFIS model is to the subjective
decision making process.

Eyes

NLFs

Mouth

RM
SE

 

Figure 3: Spread of the RMSE between the descrip-
tor agreement values and the values of the membership
functions for the eyes, NLFs, and mouth of the PFIS.

In general, there is a significant difference be-
tween the descriptor agreement values and the corre-
sponding membership values (Figure 3). However, in
all cases, the specialist’s agreement values are closest
to the membership values in the extreme cases when
there is either “high” symmetry or “low” symmetry in
the image. As the notion of “medium” symmetry is
not well defined it is unsurprising that in each region
the expert’s opinion of medium symmetry is most dif-
ferent from the membership values to the fuzzy set
“medium”.

The neurologist commented that the inference
rules used in the PFIS are clinically relevant. It is pos-
sible however that the rule “high eye symmetry" and
“high mouth symmetry" and “moderate NLF symme-
try" implies no weakness, may not be applicable in
some cases. In particular, the expert noted that when
making decisions about weakness in the upper por-
tion of the face that eye symmetry is comprised of
both the size of the eye opening and eye brow eleva-
tion; the latter is not accounted for in this current study. Future work will investigate how to extract features for
eye brow elevation from facial images and their inclusion in the decision making process for facial weakness.

5 Discussion

This work presents a proof-of-concept feature extraction and decision making system for the identification of
pathological facial weakness. The results show that facial weakness can be accurately identified by the PFIS;
particularly when accurate feature information is used in the decision making process. The findings of this
work are relevant to screening tools for stroke such as the CPSS. One significant strength of the PFIS is the
transparency of the decision making process. The neurologist noted that it is clinically relevant to characterise
symmetry in the eyes, NLF and mouth, into three distinct categories that align with the membership functions
used in the PFIS. The classification of “weakness" vs “no weakness" is clinically described as “abnormal" or
“normal". Moreover, neurologists naturally interpret images in terms of the degree of asymmetry rather than
the degree of symmetry as used in this work. Finally, the three descriptive categories/membership functions of
“low", “medium” and “high" symmetry would traditionally be referred to as “mild", “normal" and “severe" in
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relation to asymmetry. The canonical isomorphism between these sets of naming conventions mean the findings
would hold if labelling were changed.

In comparison to a similar study [Zhuang et al., 2018] which used penalized Linear Discriminant Analysis
(pLDA) to classify the input images as normal, left-sided weakness or right-sided weakness, the models pre-
sented in this paper appear to outperform the previous findings. In the present paper only 3 input parameters are
used in the decision making compared with the 68 coordinates of facial landmarks used in [Zhuang et al., 2018].
The input features in this work rely on the pixel area of each predicted mask. Although this resulted in good
results, it is a primitive and course approach to calculate asymmetry. A more robust approach would be to take
in to consideration the shape of the predicted masks as well as the area. A more sophisticated approach to
measuring facial symmetry will be considered in future work. As this previous study considered 3 class clas-
sification it is not appropriate to do a direct comparison with the models in this work. The distinction between
left and right sided weakness is omitted in this work as it is not required for commonly used stroke screening
tools but could provide an interesting line of investigation in future studies.

The precise pathology of facial weakness is not known in the open source image set and it likely con-
tains more conditions than just stroke; such as Bell’s Palsy. In particular, upper facial weakness, including eye
symmetry, is only applicable in a small number of stroke cases. Future work will aim to refine the modelling
approach presented in this work to facilitate the distinction between cases of stroke and other conditions that
mimic stroke. Such investigations would require the collection of novel data including a comprehensive neuro-
logical examination to determine the pathology of the facial weakness. The images used in the facial weakness
dataset contain some heterogeneity in terms of sex, age, ethnicity and facial weakness. The images also vary by
dimension and background scenes. Moreover, the faces in the images differed in size as well as mild orientation
differences. To implement the detection of facial weakness in a clinically relevant setting there are a number
of factors that also need to be considered. The models have not been exposed to images where the person is
lying down. In this scenario the facial features may become sunken backward and become more challenging
to distinguish. Future work is required to increase the quantity, diversity and realism of the training and test
datasets.

6 Conclusion

The extraction of facial features using Mask R-CNN and the subsequent detection of facial weakness by the
PFIS shows that it is feasible to accurately automate the detection of facial weakness. This decision making
is transparent, traceable and aligns with current clinical practices and expertise. The findings from this work
show that Mask R-CNN and the PFIS could be effective methods for identifying facial weakness relevant for
the early detection of stroke. Future work will investigate the use of fuzzy modelling with image and video data
of patients with known stroke.
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Abstract 

Hand gesture recognition, using skeletal hand keypoints estimated from depth sensors, is an active field 
of research. Unfortunately, many other potential hand keypoint applications are precluded by the limited range 
of depth sensors offering accurate hand pose estimation. Video-based hand pose estimation offers the potential 
to provide non-intrusive monitoring of hand movements. However, due to occlusions and the complex structure 
of the hand, hand poses predicted from video frequently contain many erroneous keypoints, hampering the 
detection and recognition of hand movements. We propose a method to significantly improve the detection of 
abnormal hand movements and introduce a novel video-based dataset containing normal and abnormal hand 
movements. 

 
Keywords: activity recognition, skeletal joints, hand keypoints, data cleaning, hand pose estimation 

1. Introduction  

Video-based human activity recognition has been the focus of much interest over recent years and has applications in 
fields as diverse as security, sports, and healthcare. Skeletal keypoints, estimated from video data using algorithms such 
as OpenPose [Wei et al., 2016], can be used to create efficient activity recognition models. In addition to body 
keypoints, OpenPose can estimate hand keypoints [Simon et al., 2017], shown in Figure 1, opening new possibilities 
for the automatic recognition of hand movements. However, accurate hand pose estimation is generally more 
challenging than body pose estimation due to the frequent occlusions of parts of the hand and the complex skeletal 
structure of the hand, leading to the generation of inaccurate and often physically impossible hand poses. Hand 
keypoints can be hidden from a camera’s view by other parts of the hand, body or objects held in the hand.  

As OpenPose predicts keypoints independently for each frame in a video, there is a slight variation in the 
predicted location of keypoints between frames even when a person remains stationary. In extreme cases, mainly when 
a limb is partially occluded, the algorithm may erroneously generate sequences in which a stationary limb appears to 
move, as illustrated in Figure 2. However, erroneous finger joint keypoints movement is relatively common due to the 
size and occlusion of the phalanges. As fingers are frequently occluded during normal movement, unrealistic estimated 
hand poses and rapid inter-frame movement are common. Applying a temporal filter to smooth keypoint locations is 
an efficient way to remedy most erroneous limb movements [Han et al., 2017], but is 
ineffective for finger keypoints due to the frequency of erroneous predictions.  

To date, most existing research on the automatic recognition of hand movements has 
been focused on the emblematic hand gestures used for human-computer interaction or sign 
language interpretation [Cheng et al., 2016]. In these cases, the subject typically provides 
precise gestures, helping to ensure that the hand pose is captured clearly, aiding automatic 
interpretation. Less explored are hand movements where clear hand signals are not provided, 
such as those observed when monitoring for abnormal or agitated behaviours within the 
home. We investigate whether keypoints extracted from video data, captured by an RGB 
camera situated at an unobtrusive distance from the subject, such as above a TV screen in  

       
Figure 1: OpenPose 
estimates 18 body 
keypoints and 21 hand 
keypoints  from video. 
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the living room, can provide sufficiently accurate detail to detect abnormal hand movements. We explore whether 
including hand keypoints with body keypoints improves the detection of abnormal hand movements and considers 
approaches for cleaning noisy hand keypoint data. Finally, we present a novel video-based dataset of settled and agitated 
hand movements. The dataset, realistically unbalanced, has been collected in a simulated home environment contains 
mainly settled behaviour interspersed with a small number of short periods of agitated hand movement.  

2. Related Research 

Representing a person’s movement by a sequence of skeletal keypoints is a widely researched activity recognition 
approach [Han et al., 2017]. Hand and body keypoints can be extracted from data captured by a 3D sensor or video 
camera. 3D sensors able to locate hand keypoints include the Leap Motion1 Controller and Intel RealSense2. However, 
both 3D sensors, when used for hand tracking, have a range of less than 60cm, rendering them unsuitable for monitoring 
behaviour within a home environment. RGB cameras are widely available, non-intrusive, and provide a rich source of 
data. In addition to capturing the whole body, they can provide detailed information about hand movements. 2D body 
keypoints obtained from video have been shown to be as effective for activity recognition as 3D body keypoints 
[Marshall et al., 2019]. While algorithms that estimate body keypoints from video have been trained on massive 
datasets, there are no hand datasets with annotated keypoints of comparable size due to the difficulty of creating 
annotated or synthetic hand datasets. Instead, the OpenPose hand keypoint detector employs weakly supervised learning 
to train a hand keypoint detector using a small, labelled training dataset and a series of unlabelled images of a single 
hand from multiple views [Simon et al., 2017]. Similar to OpenPose but faster, Google’s MediaPipe3 also offers image-
based hand pose extraction. However, as MediaPipe is still in the early stages of development and subject to changes, 
this study is based on OpenPose keypoints. Moreover, we expected occluded joints to present similar challenges across 
all hand pose estimation models.  

Dynamic hand gestures consist of hand movements that evolve over multiple frames. Whilst some recognition 
approaches are based entirely on keypoint location  [Nguyen et al., 2019], many approaches construct new low-level 
frame-based features. Handcrafted features include fingertip angle, the distance between fingers, motion, rotation and 
elevation from individual or multiple keypoints  [Marin et al., 2014; De Smedt et al., 2017]. Traditional learning 
approaches reduce the sequence of frames to a single feature vector using Fisher Vectors, temporal pyramids [De Smedt 
et al., 2017] or neural networks [Nguyen et al., 2019]. Non-deep models used for classifying dynamic hand gestures 
include Support Vector Machines (SVM) [Nguyen et al., 2019; De Smedt et al., 2017] and Random Forest [Canavan 
et al., 2017]. Similar to whole-body activity recognition, deep dynamic hand movement recognition approaches include 
Convolutional Neural Networks [Devineau et al., 2018], Recurrent Neural Networks [Avola et al., 2019], and Graph 
Convolutional Networks [Li et al., 2019].  These deep learning approaches enable both temporal and spatial connections 
to be retained. Whilst successful for hand gesture classification, these approaches have been used only with hand 
keypoints captured by a 3D sensor close to the hand. Four widely used, publicly available, labelled 3D hand gesture 
datasets provide 3D depth images and keypoint locations of hand gestures: [Avola et al., 2019; Boulahia et al., 2017; 
Marin et al., 2014; De Smedt et al., 2017].  The datasets, created for hand gesture recognition tasks, contain precise, 

 
1 Leap Motion https://www.ultraleap.com/product/leap-motion-controller/ 
2 Intel RealSense: https://www.intelrealsense.com/ 
3 MediaPipe Hands: https://google.github.io/mediapipe/solutions/hands.html 

 
Figure 2: Estimated poses of a subject with folded arms, the incorrect poses create a false impression of movement.  
 

Proceedings of the 23rd Irish Machine Vision and Image Processing conference IMVIP 2021

September 2-3 , 2021, DCU 50 978-0-9934207-6-4



predetermined hand gestures, where the hand is directly in front of the sensor. In contrast to previous research, our 
study focuses on recognising non-gesture hand movements symptomatic of agitation. 

3. Data cleaning of estimated wrist and hand keypoint locations 

Erroneous keypoint locations can result in a false prediction of movement. Figure 2 illustrates a situation where, 
although the subject is stationary with their arms folded, the predicted wrist locations in frames a-c suggest movement. 
Due to the high proportion of erroneous keypoints generated by the hand pose detection algorithm and the potential for 
long sequences of hand and wrist occlusion, sequences of wrist and hand keypoints that erroneously suggest movement 
are common and can be challenging to clean. For example, in Figure 2, it is unclear whether the true position of the 
wrist corresponds to the locations predicted between the red or the blue triangles. Three approaches are considered for 
identifying erroneous sequences of hand and wrist keypoints: two rules-based methods specific to sequences of hand 
poses and a generic outlier detection method. 

For each frame, the OpenPose body keypoint detector predicts 18 body keypoints, whilst the hand keypoint 
detector predicts 21 hand keypoints (four keypoints per finger and thumb and one palm keypoint) for each hand. A 
confidence score is generated for each keypoint. For a single 2D frame, f, the location of the 60 joint locations, j, is 
denoted by 𝑃𝑓 = {𝑝𝑓,0, … , 𝑝𝑓,59}, in the original image coordinate space, where 𝑝𝑓,𝑗 = {𝑥𝑓,𝑗, 𝑦𝑓,𝑗, 𝑐𝑓,𝑗} for the jth 
keypoint, and c is a confidence score in the range [0,1]. Temporal sequences of keypoints over n frames are denoted 
𝑆 = {𝑃1, 𝑃2,…𝑃𝑛}. All body keypoint locations, except for the wrists, are discarded. In this study, video data is captured 
at 30 frames per second. All sequences are non-overlapping and of ten seconds (300 frames) duration. 

 As OpenPose detects hand and body pose independently for each frame, even non-occluded keypoint locations 
move slightly between frames. Therefore, instead of using every keypoint in a sequence to calculate movement, 
movement is considered over ten frames. Each ten-second sequence is split into 30 non-overlapping ten-frame windows 
from which the largest Euclidean distance between any two keypoints in each window is calculated. Ten-frame 
displacement is illustrated in Figure 5a. 

ten-frame displacement of joint j =max (√(𝑥𝑎,𝑗 − 𝑥𝑏,𝑗)
2 + (𝑦𝑎,𝑗 − 𝑦𝑏,𝑗)

2),∀ frames a and b within the window   [1] 

Restraint of unrealistic palm or wrist movement: OpenPose estimates wrist locations using the body detector model, 
whilst the palm is estimated using the hand detection model. As the wrist and palm are closely linked physiologically, 
we would expect a strong correlation between their locations and movement. Large movement of the wrist when the 
palm is mainly stationary, or vice-versa, as illustrated in Figure 3, is unrealistic. When the sum of all 30 ten-frame 
displacements of a wrist sequence are greater than twice that of the palm, or vice-versa, unrealistic movement is 
suppressed by fixing the keypoint with the most movement to the initial frame location for the entire sequence. 

Replacement of unrealistic hand poses: unrealistic finger keypoint locations, such as those shown in Figure 4, are 
common due to the occlusion of fingers. The physiology of the hand is used to create criteria for a realistic hand pose. 
Each hand pose is checked to ensure that it fulfils all the criteria. Any poses considered to be unrealistic are removed 
and imputed using linear interpolation between the frames. The four categories of unrealistic hand poses are: 
a. Crooked fingers: joints within a finger are bent in different directions, as shown in Figure 4a, where the blue and 

pink fingers are bent in different directions. 
b. Joint angles with small angles: joints that close at an angle of less than 10o are considered unrealistic. The red finger 

in Figure 4b has an unrealistic joint. 

 
Figure 3:The difference between the extent of palm and wrist movement suggests erroneous keypoint predictions. 
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c. Multi-directional fingers: the direction of adjacent fingertips changes more than once. Figure 4c illustrates a 
predicted hand pose where the directions of the yellow, green, blue, and pink fingertips alternate. 

d. Unrealistic phalange length ratio: a phalange is more than three times the length of any corresponding phalange. 
The third pink phalange in figure 4d is disproportionately longer than those in the other fingers. 

If a hand pose is unrealistic according to any criteria, all the keypoints from the unrealistic hand are removed and 
replaced using linear interpolation of the keypoints from adjacent frames. As dynamic information may be lost by 
interpolating missing data between the remaining poses, especially in sequences with many unrealistic hand poses, 
interpolated hand pose locations are adjusted to track wrist movement. If all hand poses in a sequence are considered 
unrealistic, the first pose is replicated for every frame of the sequence, suppressing all hand movement. Suppressing 
movement in this way is acceptable, as a moving hand is likely to be correctly estimated at some point in the sequence.  

Outlier Detection: Outlier detection is widely used for signal data. Outliers are defined as keypoints more than three 
scaled median absolute deviations [MAD] from the median. The horizontal and vertical keypoint locations are 
considered separately. A sequence, 𝑆𝑗,𝑑 of n frames of the jth keypoint is denoted 𝑆𝑗,𝑑 =  {𝑞1,𝑗 … , 𝑞𝑛,𝑗}, where q can 
represent the horizonal or vertical dimensions of the point p. 

MAD =  (𝑚𝑒𝑑𝑖𝑎𝑛(|𝑆𝑗,𝑑 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑗,𝑑)|)𝑓𝑜𝑟𝑖 = 1,2,…𝑛 [2] 
Outlying hand and wrist keypoint locations are replaced using linear interpolation between adjacent frames. 

A Savitzky-Golay filter (with polynomial order three and temporal window of length 7) is applied to each keypoint 
to smooth the keypoint locations. The Savitzky-Golay filter was selected due to its ability to smooth noisy signals with 
large frequency spans whilst maintaining the shape and height of the waveform peaks [Schafer, 2011],  as is indicative 
of agitated movement. 

4. Machine Learning Model and Feature Creation 

Twelve displacement features are created from hand and wrist keypoints to describe the subject’s movement during 
each ten-second sequence to detect abnormal movement. All features are normalised in the range [0,1]. 

Dominant hand: As abnormal movement can occur in either hand, features are created from a single dominant hand. 
The dominant hand is deemed the one that moves the most, calculated from the sum of all 30 ten-frame displacements 
of each wrist. Where there is only a small amount of wrist movement (the sum of all 30 ten-frame displacements is less 
than twice the distance between shoulder keypoints), the dominant hand is 
determined using the sum of ten-frame displacements of the thumb and the sum of 
ten-frame displacements of the mean fingertip locations. 

Displacement of keypoints (8 features): Displacement features are created from 
the hand and wrist keypoints of the dominant hand. Three features are created from 
the thirty ten-frame displacements of the mean of the 21 hand locations in each 
frame: sum of ten-frame displacements, standard deviation of ten-frame 
displacements, largest ten-frame displacement. The sum of ten-frame displacements 
is also found for the wrist, thumb, fingertips, and palm keypoint location. A final 
feature, 300-frame displacement for the entire 10-second sequence, is calculated 
from the largest Euclidean distance between any two keypoints in the sequence. 

  
 a b c d 
Figure 4: Four categories of unrealistic hand poses are identified. 

 
 a b 
Figure 5. The maximum distance 
between keypoint locations over 
different periods of time can 
describe joint movement.  a) ten 
frames and b) 300 frames. 
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Figure 5 illustrates the keypoint locations of a wrist a) over a ten-frame window and b) over the entire ten-second (300 
frames) sequence where wrist joint locations in each frame are shown with a blue point and displacement a red line. 

Distribution of Keypoint Locations (3 features): Three covariance features are created from the wrist location, 
describing the distribution of keypoint locations within a sequence: the horizontal variance of keypoint location, the 
vertical variance of keypoint location, and the direction of the eigenvectors. The absolute value of direction is used to 
prevent differentiation between left- and right-handed movement. Figure 6 illustrates how covariance of keypoint 
locations can help detect movement. In Figures 6.1a and 6.2a, the movement of the limbs throughout the sequence is 
shown. In Figures 6.1b and 6.2b, only the wrist keypoints are used to describe movement. Figure 6.1c and 6.2c show 
how a covariance ellipse can describe the range and direction of movement of a keypoint. Where no movement is 
detected, such as in Figure 6.2c, the ellipse is represented by a single point. 

Variation in Confidence Scores (1 feature): Occlusion of some hand keypoints is inevitable with movement. 
Therefore, confidence scores provided by the OpenPose algorithm can indicate hand movement, as changes in 
confidence may occur because of occlusions. Since a low confidence score indicates occlusion and a high score 
indicates non-occlusion, a confidence score that varies significantly throughout a sequence suggests hand movement. 
Movement is detected by locating peaks in the average confidence scores for the fingertips and thumbs, as shown in 
Figure 7. Peaks are found using the findpeaks MATLAB function (with prominence=0.4 determined empirically). The 
total number of peaks detected is used as a feature. 

Classification: Support Vector Machines were used to classify the behaviours, as they are suitable for use with data 
containing imbalanced class distributions. Leave-one-out cross-subject validation was used. Accuracy was compared 
using F1 scores due to the imbalanced classes and the importance of false negative and false positive detections of 
abnormal behaviour.  

F1 score = 𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+1

2
(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

 [3] 

5. Dataset 

Whilst there is a small number of RGB hand gesture datasets, we are not aware of any datasets containing natural, non-
gesture hand movements. To facilitate this study, we have collected a small dataset of settled behaviour, where subjects 
are relaxing whilst watching TV, interspersed with various repetitive hand movements. Eight healthy participants were 
recorded using an RGB video camera whilst seated in front of a TV for around 35 minutes. The camera was set above 
the TV, directly facing the participant at approximately two metres distance. Video images were captured at 30 frames 
per second. The setup is shown in Figure 8. 

 1a 1b 1c 2a 2b 2c 
Figure 6. A covariance ellipse can be used to describe movement. Whilst the wrist movement of clapping is seen the 
large ellipse 1c (plotted in red), no movement, as in 2c, produces a tiny ellipse.  
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Participants were asked to remain seated throughout the entire recording. An audio alarm was used every three 
minutes to remind participants to demonstrate a repetitive hand movement for at least ten seconds. Five types of hand 
movements are studied: picking, scratching, rubbing, wringing, and clapping. The 
first four movements are indicative of common types of repetitive behaviours 
[Cullen et al., 2005] in people living with dementia. Clapping - a clearly defined 
repetitive action - is included as a benchmark activity. The participants decided 
which movement that they wanted to demonstrate on each occasion. For the 
remainder of the time, participants relaxed, seated in front of the TV. Whilst 
relaxed, although remaining seated, participants moved normally. Normal 
movements included rubbing the face, checking the phone, stretching, and blowing 
the nose. No participant sat completely still whilst relaxing. The study was approved 
by the relevant Ulster University Faculty Research Ethics Filter Committee. 

Estimation of body and hand keypoints: If a body keypoint is occluded, 
OpenPose returns a missing value for that keypoint. If a wrist keypoint is missing, all the keypoints from the 
corresponding hand will also be missing. However, if the wrist keypoint is predicted, OpenPose predicts all the 
corresponding hand keypoints, regardless of whether any hand keypoints are occluded. As parts of the hand are 
frequently occluded from camera view, OpenPose must regularly predict the location of unseen hand keypoints. Only 
hand and upper body keypoints were used in this study. 

Data Annotation: Each frame of the video data was annotated manually by the first author. Movements were divided 
into four behavioural classes: settled, normal, small repetitive movements, and large repetitive movements. Small 
repetitive movements are finger-only movements, including using a mobile phone, changing television channels with 
remote control, rubbing fingers, and small picking movements. While the difference between types of behaviours is 
incremental, dividing the behaviours into different classes is necessary for detecting abnormal behaviours. As the 
subjects are recorded continuously, the data contains behaviours from the four classes and the transitions between 
classes. In this study, only sequences containing ten continuous seconds of the same behaviour are considered; the 
detection of abnormal hand movements from continuous data will be considered in a future study. 

Keypoint location data are divided into ten-second (300 frames) sequences. Sequences of behaviour lasting less 
than 10 seconds were discarded. To ensure that sequences do not contain a mixture of behaviours, additional two 

 
Figure 8: With a camera placed above the TV screen, the subject is recorded whilst seated, watching TV. OpenPose 
is used to estimate hand and body keypoints.  
 

 
Figure 9: Distribution of types 
of behaviour in the dataset. 

     
 a b c 
Figure 10: a-b) Proportion of hand poses replaced from each sequence. c) number of keypoint sequences replaced.  
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seconds of data was discarded each time a behaviour changed. A total of 1093 discrete ten-second sequences were 
created. As most normal behaviour, such as checking the time or rubbing the face, lasts less than ten seconds, only three 
ten-second sequences of normal behaviour were captured, which were also discarded due to insufficient observations. 
Additionally, as the dataset was collected to realistic movement suitable for recognising and detecting abnormal 
behaviour, most sequences contain settled behaviour, as shown in Figure 9. 

6. Results and Evaluation 

The effectiveness of replacing unrealistic hand poses, restraining unrealistic wrist and hand movements, and outlier 
detection approaches to cleaning noisy hand pose estimations were compared using the same features and classifier. 
Additionally, movement features were created from only the wrist keypoints estimated from the OpenPose body 
keypoint detection algorithm to discover whether including hand keypoint locations with body keypoints improves the 
model’s ability to detect abnormal hand movements.  

As shown in Figure 10, unrealistic hand poses were identified in sequences in all three types of behaviour, 
highlighting the importance of cleaning the hand pose data. However, unrealistic wrist or palm movement was identified 
only in the sequences of settled behaviour where there should not have been much movement.  Outlier detection 
identified unrealistic keypoint locations for both hand and wrist joint sequences in all types of behaviour, although they 
were most frequently identified were in settled behaviour. 

The F1 accuracies in Table 1 show the performance of different combinations of the keypoint cleaning 
approaches, highlighting that cleaning the hand keypoint data improves the ability of the model to recognise repetitive 
hand movements. Furthermore, the rules-based cleaning approaches can increase accuracy more than using outlier 
detection. The confusion matrices in Figure 11 show that whilst only 50% of the small repetitive hand movements were 
detected even after the keypoints had been cleaned, this is a ten-fold improvement on the number of keypoints detected 
for the uncleaned sequences. Combining outlier detection with the rules-based cleaning methods resulted in a lower 
detection accuracy than using only the rules-based methods, suggesting that outlier detection is less precise than the 
rules-based approaches. Additionally, the approach based only on wrist keypoints achieved a slightly higher accuracy 
than the approach which included uncleaned hand pose keypoints (64% compared to 62%), indicating that some 
cleaning of hand pose keypoints is essential if they are to be included in the model. 

7. Conclusion and Future Research 

Whilst the dataset used is small, this study demonstrates the potential for using a video-based approach to detect 
abnormal hand movements. We have shown that keypoints extracted from video data, when cleaned appropriately, can 
provide sufficient detail to recognise most repetitive hand movements. Despite the large numbers of unrealistic hand 
poses and keypoint sequences, including cleaned hand keypoints with the body keypoints improved the recognition of 
abnormal hand movements, especially for the small repetitive hand movements. Furthermore, we have demonstrated 
that whilst both generic and rules-based approaches to cleaning hand keypoint data can improve detection of abnormal 
hand movements, the rules-based approach resulted in higher accuracy. We plan to build on this study by creating a 
system that automatically detects abnormal, agitated hand movements from keypoints estimated from continuous video 
data. Furthermore, we aim to enlarge the dataset. A larger dataset would enable us to understand better the ability of 
our approach to generalise to new subjects, as well as to investigate the use of deep classification models 

 Keypoint Cleaning Method 
 Hand and Wrist Keypoints (12 features) Wrist keypoints only (7 features) 
Unrealistic poses replaced (UP)  ✓   ✓ ✓   
Wrist and Palm Restrained (WP)   ✓  ✓ ✓   
Outlier Detection (OD)    ✓  ✓  ✓ 
Macro F1 accuracy 0.62 0.83 0.73 0.69 0.84 0.78 0.64 0.64 

Table 1: Comparison of Results 
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Abstract 

Advertising has a huge impact on modern life hence its analysis is very important. Billboard detection in a scene is 
very challenging given the outdoor position of billboards and the changing nature of a board’s size, scale, and the 
angle at which it is viewed by oncoming traffic or pedestrians. Hence the requirement to detect the billboard and 
determine the visibility to consumers is a very difficult task. In this paper, we propose a system which will not only 
detect a billboard but also classify the different types of billboard panels. There exists a number of different types 
of billboard such as Street Furniture, Roadside, in-Mall, or Spectacular to name a few, however here we focus solely 
on Street Furniture and Roadside. For this, the Tensorflow object detection API is used with the Single Shot 
Multibox Detector (SSD) architecture. SSD is chosen because of its high-speed computation and ability to eliminate 
false-positive cases. In this paper, we demonstrate SSD’s detection performance by fine-tuning hyperparameters 
and illustrate this using a dataset of billboards in the wild. 
 
Keywords: Object Detection, Single Shot Detector (SSD), Deep Learning, Billboard, Image Processing 

1. Introduction  

Billboards are the only media which cannot escape the attention of the pedestrians and drivers of any moving 
vehicle. They are also considered a more reliable source of advertising than advertisements seen online [Borisova, 
O. and Martynova, A. 2017]. Advertisements influence a person’s mind and this ultimately increases the profitability 
of the company who has placed them. Traditionally, outdoor impressions have been measured using traffic counts 
and daily circulations to calculate total reach and quantify consumer viewing of billboard advertising. More recently, 
with the advancement of Spatial and GIS information, along with SDKs and millions of applications, location based 
mobile data are widely used to measure audience impressions and give insight. While eye-tracking technology offers 
huge advancements in outdoor impression measurement, considering the high cost of equipment and wearables 
combined with the sample size, its use still poses difficulties around accurate measurement of billboard visibility. 
Visibility factors take the physical visibility characteristics of billboards into consideration which are independent 
of an individual’s visual attention and are therefore more suited for obtaining an overall measurement of billboard 
visibility [Wilson, R. T. and Casper, J. 2016]. 
 
When dealing with detection of objects or structures outdoors or ‘in the wild’, we need to consider factors such as 
the object location, the viewing angle of the billboard, whether the object is illuminated, if it is static or digital 
signage, if a car is in motion then what is the contact zone, occlusion by trees or many other factors. Visibility also 
can be obstructed by the weather conditions, glare from any light source, relative position of object and observer 
distance, brightness of background etc. All such factors, which can be considered as Visibility Adjustment Indices 
(VIAs), play an important role in determining the impact and value of an advertisement impression, which will 
affect the marketable value of a particular billboard at a particular location.  For example, if a billboard is partially 
covered by a tree from the pedestrians on the other side of the road or it is not visible due to illumination issues, this 
could potentially reduce it’s value to an advertiser. In the case of high billboard visibility such as placement of a 
unit beside traffic lights, it will most likely be viewed by drivers as well as pedestrians, and therefore will have 
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increased value [Wilson, R. T. and Casper, J. 2016]. Hence the VAIs play a key role in advertising billboard value. 
In this paper we present a dataset which contains static billboard images captured to include a range of these possible 
visual variations. We then determine the billboard's location by manually annotating a bounding box, and 
subsequently training a convolutional neural network to automatically recognise the billboard. Detection 
performance is evaluated and visual performance demonstrated.  

2. State of Art  

Computer vision is commonly used for understanding the external world through the use of algorithms. Common 
applications include understanding image data in order to identify and classify objects, object tracking, vehicle 
position monitoring, lane tracking and night time lane marking recognition [Li, Y. et al. 2016].  Much research has 
also focussed on developing algorithms to model human attention and saliency; saliency detection is an automatic 
process of locating the key parts of an image without any prior knowledge. Issues with current saliency approaches 
are that models use contrast and colour for low-level saliency cues [Krishna, O. and Aizawa, K. 2018].  
 
Computer vision techniques have been previously used to specifically detect advertising boards. Such approaches 
have been based on Canny edge detection and morphological operations in order to determine the rectangular area 
of a billboard. However, many of these approaches used datasets containing minimal background noise and therefore 
are unable to generalise for the detection of unknown billboards in a range of dynamic scenes and environments 
[Rahmat, R.F. et al. 2019]. Another study demonstrated that to automatically detect regions that may be billboards, 
planar object detection can initially be used to locate and describe such objects. Planar object detection involves 
gathering individual object level information from an image then classifying which one of those objects is a billboard 
[Liang, P. et al. 2018]. In [Watve, A.K. and Sural, S. 2007] the focus was on the detection of advertising billboards 
on a soccer field, and this was achieved using the Fast Fourier Transform (FFT). The approach considered field 
detection, baseline detection, occlusion by players, image rectification, advertising board height detection and 
advertising board extraction using image data collected with a high resolution camera to provide the required clarity 
and high frequency colour intensities. The research in [Cai, G., Chen, L. and Li, J. 2003] focussed on advertising 
detection in sport TV using Hough transforms and geometric features of text to extract information from live high 
quality images and showed promising results. Another example is detecting advertisements from buildings in order 
to determine if they are in accordance with rules and regulations using computer vision techniques such as image 
rectification and segmentation in order to find the coordinates of the billboard object [Bochkarev, K. and Smirnov, 
E. 2019].  
 
All these existing approaches are based on localisation and classification processes typically at pixel level. This 
process is very slow and has localisation problems when there are multiple objects in the scene. Additionally, 
considering real time use with low quality, blurry or occluded images, these methods have several limitations. There 
are various feature detectors available, however they are not capable of handling large amounts of data in real time 
applications. Hence Convolutional Neural Networks have become popular for working with large image datasets 
and high speed object detection and recognition [Shi, W., Bao, S. and Tan, D. 2019]. 
 
When neural networks are built using a number of convolutional layers in its model, these are known as 
Convolutional Neural Networks (CNNs). CNNs detect patterns in the image data and produce highly accurate 
predictions which are often measured as a percentage of correct classifications. Previous work using CNNs 
specifically for object detection has seen them applied to a wide range of applications ranging across medical 
applications, robotics, industry, wildlife detection, and geo-tagging. Most of the modern neural network 
architectures are derivatives of the famous ImageNet competition on supervised learning in computer vision in 2010, 
for example AlexNet, VGG, GoogLeNet, NiN, DenseNet and ResNet [Alom, M. Z. et al. 2018]. The best feature of 
a CNN is the capability to use transfer learning where the pre-trained model transfers the weights of its learned 
network to initiate the process of fine-tuning for another (unseen) dataset. There is a wide range of existing pre-
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trained neural network models like YOLO,  SSD MobileNet, Faster R-CNN ResNet, and R-FCN ResNet which use 
various open-source frameworks such as TensorFlow Object detection API, PyTorch, Microsoft cognitive toolkit, 
Keras, OpenCV, and DDN Library [Rahmat, R. F. et al. 2019]. The ADNet architecture is specifically designed to 
detect advertising instances from video frames and uses Microsoft COCO dataset to train its network [Hossari, M. 
et al. 2018]. One of the most recent examples of research based on billboard detection includes a comparative study 
of a SSD model vs YOLO (You Only Look Once) which showed promising results [Morera, Á. et al. 2020]. Hence 
we will utilise SSD in this study. 

3. Methodology  

The chosen methodology focusses on using a large dataset of annotated billboard images to train a convolutional 
neural network in order to recognise different classes of billboard. This section describes the dataset, the architecture 
of SSD and the experimental setup. 

3.1 Dataset 

The given dataset (see examples in Figure 1) consists of high-resolution images of real-world billboards with various 
background scenes. For each image the billboard is positioned in a different geographical location, contains differing 
advertisement content, the billboard is subject to various changes in orientations, varying positions from where the 
image was taken, has been captured over a wide range of times and thus is subject to daily and seasonal variations. 
Within each image there may be multiple background objects such as roads, pedestrians, vehicles, buildings, trees 
etc. 

(a) 
 

(b) (c) 

(d) 
 

(e) 
 

(f) 

Figure 1.  Selection of different images representing the different billboard classes and imaging conditions 
from the dataset: (a)-(c) Roadside Billboards; (d)-(f) Street Furniture Billboards 

 
 
The billboards can be approximately grouped into two classes based on their overall size and location: Roadside  
Billboards (see Figure 1(a)-(c)) are approximately 325x250 cm  and can be placed on the pavements , or major 
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intersections , mounted on one or two posts; Street Furniture billboards (see Figure 1(d)-(f)) are approximately 169 
x 111  cm  and often placed alongside road central reservations or pedestrian areas and mounted using a single post 
or a Base . The only obvious distinguishing feature between the billboard classes is that the Roadside Billboards are 
square shaped, and Street Furniture Billboards are rectangular shaped. All billboards have a frame and include the 
advertising company logo.  
 
Billboards have been manually labelled using the LabelImage software to annotate a bounding box around the 
billboard or billboards within each image. In all cases the bounding box includes the entirety of the billboard frame 
as well as partial representation of the mounting posts when present. All bounding boxes retain a small proportion 
of background information. In total 1052 images were annotated, 532 images containing Roadside  Billboards and 
520 images containing Street Furniture billboards, and labelled with the appropriate class label. This provided an 
annotated PASCAL VOC format dataset. 

3.2 SSD Convolutional Neural Network 

The Single Shot Detector (SSD) [Liu, W. et al. 2016] is a feed-forward convolutional network that predicts bounding 
boxes and the classes directly from feature maps in one single pass, hence why it is known as the Single Shot 
Detector. The SSD detector is composed of 2 parts as illustrated in Figure 2: extraction of feature maps, and 
application of convolution filters to detect objects. In most cases the early network layers are a standard VGG-16 
network [Simonyan, K., & Zisserman, A. 2014] which has been truncated prior to any classification layers used to 
extract the feature maps; the remaining network structure is composed of six additional convolutional feature layers 
that are appended to the end of the truncated VGG-16 network.  
 
After passing through the VGG-16 layers we obtain a feature layer with a number of bounding boxes corresponding 
to object region locations. These bounding boxes may be different sizes and aspect ratios as a vertical rectangle is 
more fit for Street Furniture billboard, and a square is more fit for a Roadside billboard. For each bounding box the 
class score is computed along with offsets which correspond to the distance from the original bounding box shape.  

 
Figure 2. Architecture of SSD [Liu, W. et al. 2016] 

 
To further improve detection, the feature maps go through the remaining network convolution feature layers where 
the location and class scores are computed using small convolution filters. SSD applies 3 × 3 convolution filters for 
each location to make predictions. The 3 × 3 convolution filters compute the results just like the regular CNN filters. 
SDD uses multiple layers to detect objects at different scales because as the spatial dimension is reduced the feature 
map resolution also reduces. In SSD, the lower resolution layers are used to detect objects at a larger scale and the 
higher resolution layers are used to detect objects at a smaller scale. Multi-scale feature maps have been shown to 
improve accuracy significantly [Liu, W. et al. 2016].  
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During SSD model training, the loss function is calculated using values obtained from the labelled, predicted and 
offset categories. The loss function is the sum of a classification loss and localization loss controlled by cross 
validation further comparing with matched bounding boxes as shown in equation 1: 

 𝐿 = 1
𝑁

(𝐿𝑐 + ℵ𝐿𝑙) (1) 

where, L is the loss, Lc is the classification loss, Ll is the localisation loss, N is the number of matched values of the 
bounding box, and ℵ is the cross validation calculated balanced weight between two losses. 

4. Experimental Setup and Results 

We used the annotated image dataset described in Section 3.1 with the Tensorflow object detection API [Abadi, M. 
et al. 2016] and is used with pre-trained SSD mobileNet [Howard, A. G. et al. 2017]. The dataset consist of 1052 
images is divided into two parts: 926 images (88.02%) of the images used as the training set and 126 images 
(11.98%) which are unseen during training and used to test the resulting network.  In order to train the system, we 
tuned a number of hyperparameters, including batch-size, step-size and learning rate. Batch-size was varied from 
24 to 1, step-size was varied from 25,000 to 75,000, and learning rate was varied between 0.001 and 0.004. Overall, 
the optimal parameters were found to be batch-size = 1, step-size = 75,000 and learning rate = 0.004.  
 
Performance evaluation was conducted in parallel with the hyperparameter tuning to determine the optimal 
parameters.  To do so, we use metrics such as precision, recall, average recall (AR), mean average precision (mAP), 
intersection over union (IoU) and loss each described as follows: 
      

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

   , 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

     

 
● Precision quantifies the number of positive class predictions that actually belong to the positive class  
● Recall quantifies the number of positive class predictions made out of all positive examples in the dataset. 
● AR is the average of correctness of category prediction over IoU’s. 
● mAP calculates the average precision for each class based on the network’s predicted bounding values and is 

combined with IoU, defined as the Area of the overlap divided by the area of the union of a predicted bounding 
box to adjust the accuracy if the match. 

● Loss is the localisation loss calculated as the difference between the ground truth bounding box value and the 
predicted bounding box. 

 
Step size 25,000 50,000 75,000 
Loss 6.156 6.774 6.022 
AR 62,71 53.88 64.90 
mAP 54.03 49.65 59.79 
mAP@.50IOU 80.01 71.19 83.55 
mAP@.75IOU 63.21 65.37 73.04 

(a) Learning rate = 0.004 
 

 
Step size 25,000 50,000 75,000 
Loss 6.406 6.253 6.642 
AR 59.67 61.02 59.47 
mAP 45.25 54.67 50.09 
mAP@.50IOU 78.88 80.55 75.41 
mAP@.75IOU 48.37 67.71 62.51 

(b) Learning Rate = 0.001 
 

Table  1: SSD output values with respect to hyperparameter changes with  (a) learning rate of 0.004 and (b) 
learning rate of 0.001 
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Figure 3:  mAP values with respect to step size 
 

 

Figure 4: AR values with respect to step size 
 

 

Observing the highest AR values in Figure 3 and Figure 4 alongside the mAP in Table 1 we can conclude that the 
highest accuracy at 59.79 mAP approx. 60% is obtained when the learning rate is set to 0.004 and step size is set to 
75,000 resulting in the lowest loss value in Table 1(a). Once training is completed the test set is used to validate 
performance and visual examples of the network in detecting the two classes of billboards Roadside and Street 
Furniture are shown in the Figure 5. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.  Examples of the final network performance in detecting the two classes of billboards using unseen 
testing images: (a)-(c) Roadside Billboards; (d)-(f) Street Furniture Billboards 

5. Conclusion 

This paper presents an approach to detecting advertising billboards in outdoor environments. Using transfer learning 
with SSD the outdoor billboards were successfully detected with 60% training accuracy. However, in testing there 
are some cases when billboards were not detected as either of the two classes resulting in missed detection. We are 
currently exploring increasing the training dataset size and augmenting the dataset with additional variations of 
billboards to improve the detection rate. We are also exploring the use of different segmentation masks other than 
bounding boxes to determine if they can improve detection performance. Additionally, we will consider the use of 
other deep learning architectures such as RCNN, RFCN and YOLO.  
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Abstract

Localization of street objects from images has gained a lot of attention in the recent years. We propose
an approach to improve asset geolocation from street view imagery by enhancing quality of the metadata
associated with the images using Structure from Motion. The predicted object geolocation is further refined
by imposing contextual geographic information extracted from OpenStreetMap. Our pipeline is validated
experimentally against the state of the art approaches for geotagging traffic lights.

Keywords: Structure from Motion, street view imagery, OpenStreetMap

1 Introduction

Figure 1: Example of a street view image with its meta-
data overlaid. The image is captured with Dioptra app3.

Monitoring public assets is a labour-consuming task
and for many decades, solutions collecting street
view imagery have been routinely deployed in com-
bination with computer vision-based approaches for
object detection and recognition in images [8].
Nowadays, street view images are available in mas-
sive amounts (e.g.: Mapillary1, Google Street View
(GSV)2) and additional information about the scene
can be further extracted by machine learning tech-
niques. Krylov et al. [14, 15] have employed deep
learning modules for segmenting objects of interest
(e.g. poles) in images and estimating their distance
from the camera, and a Markov Random Field (MRF)
is then used as a decision module to provide a us-
able list of the GPS coordinates of the assets of inter-
est, limiting duplicates by reconciling detection from
multiple view images.

The MRF conveniently merges information extracted from images and their metadata i.e. their associated
camera location (GPS) and bearing information (cf. Fig. 1).Currently, the pipeline of Krylov et al. assumes
that the metadata associated with the camera view pose is noiseless, however, it is not always the case (e.g.
due to GPS receiver imprecision) and consequently, this noise affects the accuracy of the geo-location of the
assets found. In this paper, we propose to improve that pipeline by (1) denoising the camera metadata using
Structure from Motion (SfM) and (2) using contextual information extracted from Open Street Map (OSM)4 to
push the predictions to a more probable area where the objects should be situated based on road and building

1https://www.mapillary.com/
2https://developers.google.com/maps/documentation/streetview/overview
3https://play.google.com/store/apps/details?id=com.glidelinesystems.dioptra
4https://www.openstreetmap.org/
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locations. Fig. 2 summarizes our contributions and our approach has been validated for traffic light geolocation
(c.f. Sec.4).

Figure 2: Pre-processing: SfM aims to de-noise camera medadata (i.e. poses) used as an input of the MRF.
Post-processing: the Map prior module refines the result from MRF using contextual information from OSM.

2 State of the Art

2.1 Camera geolocalization

Various Simultaneous Localization and Mapping (SLAM) and SfM techniques have been proposed to infer 3D
points and to estimate the motion from a set of images [13, 27, 7, 16, 10]. Bundle adjustment (BA) is integrating
matched points within a sequence of images and finding a solution simultaneously optimal with respect to both
camera parameters and 3D points. Agarwal et al. [2] is first to propose the bundle adjustment that is used in
the structure from motion. The trajectory of camera pose estimation is based on relative measurements, error
accumulation over time thus leads to drift. Lhuillier [17] proposed to use GPS geotag in the bundle adjustment
optimization. A similar problem is the camera re-localization [29, 1]. A GPS tag and SfM technique are used
to geo-localize a street view image by estimating its relative pose against images from a database. Bresson
et al. [6] and Kendall et and al. [11] proposed to employ a CNN (Convolution Neural Network) features to
estimate camera pose transformation.

2.2 Object geotagging

Qin et al. [24, 23] proposed to estimate the instance-level depth of objects in images as an alternative to pixel-
wise depth estimation. They found out the latter (obtained by minimising the mean error for all pixels) sacrifices
the accuracy of certain local areas in images. Bertoni et al. [5] employed a prior knowledge of the average height
of humans to perform pedestrian localization. Qu et al. [25] proposed to detect and locate traffic signs from
a monocular video stream. They relied on bundle adjustment with image GPS geo-tag to reconstruct a sparse
point cloud as a 3D map, then align it with several landmarks from the 3D city model generated by Soheilian
et al. [26].

Wegner et al. [28] proposed a probabilistic model to locate trees. They employed multiple modalities,
including aerial view semantic segmentation, street view detection, map information as well as the tree distance
prior. Information is fused into a conditional random field (CRF) to predict the positions of trees. However,
identical features may be mismatched in case the recurring objects sit nearby. To solve this issue, Nassar et
al. [20, 21] employed the soft geometry constraint on geo-location of camera pose to identify a same object
that appears in two views. They concatenate camera pose information together with image features and decode
them using a CNN. The same object in first view can be re-identified in the second view.

Nassar et al. [19] extend the method by constructing a graph from detected bounding boxes across the
multi-views, feed the graph to a GNN [12] and let the GNN identify the same objects across different views.
Hebbalaguppe. et al. [9] predicted bounding boxes around street objects, which was followed by the two-view
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Figure 3: Input image representation consists of 8 overlapping rectilinear views split from a 360° field of view
panorama. The image shown above is acquired from Mapillary API1.

epipolar constraint to reconstruct 3D feature points from the two observed scenes. However, the 3D feature
point does not necessarily fall inside the target bounding box. Krylov et al. [15] employed the camera pose
from multiple views as a soft constraint and used semantic segmentation of images alongside a monocular
depth estimator to extract the information (bearing and depth) about objects of interest, and feeds the obtained
information into an MRF model that predicts their locations.

3 Methods

We present camera calibration using the SfM technique in Section 3.1, which provides a higher quality infor-
mation to be used as an input to the MRF presented in Section 3.2. Section 3.3 proposes a post-processing
method to refine the MRF predictions.

3.1 Structure from Motion: using optical observation to denoise on GPS data

The input represents a set of N panoramic street view images (360° field of view) captured with their metadata
in an area of interest. Accurate camera geo-location is a key to accurately geo-locate objects in the scene. The
GPS position in the metadata is inherently noisy, which lowers the accuracy for predicting object positions. To
get a better estimate of the GPS coordinates associated with each camera position, we propose to tune each of
the camera positions with a conventional 3D reconstruction pipeline [3], followed by bundle adjustment [2].
To ease image matching, we split the 360° panorama views into 8 overlapping rectilinear views: each view
covers a 90-degree field of view and is overlapped by 45 degrees in the horizontal direction. Each view is then
considered as an image captured by a pinhole camera, free of distortion (see Figure 3).

We aim to find all possible matching features extracted from our images and perform camera calibration to
adjust the camera pose from image metadata.

We note the set of rectilinear views V = {v (i )
1 , · · · , v (i )

8 }i=1,··· ,N where v (i )
1 , · · · , v (i )

8 corresponds to rectilinear
views associated with panorama i = 1, · · · , N (N = 112 in our experiment). Suppose two views are matched
by their detected features. The epipolar constraint with 5 point algorithm [3] is applied to find the essential
matrix E which establishes the geometry relationship between two views. E can be further decomposed into
translation and rotation matrix, noted as R and ø, respectively. They can be put together as a transformation
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matrix £ 2 SE(3)

£=
µ
R ø

0 1

∂
2R4£4 with R 2 SO(3) and ø 2R3. (1)

Each calibrated view in V is associated with £ = (R,ø), these parameters can be estimated by minimizing the
re-projection error from 3D feature space to 2D image plane within a bundle of images.

3.2 Object geolocation with MRF

The MRF model performs binary decisions on the nodes of a 2D graph, each node corresponding to an inter-
section between two rays. The rays correspond to rays (in 2D) with origins the camera GPS coordinates and
with directions the bearings associated with the segmented object of interest (the pixel in the middle of the
segmented object is chosen for the bearing information). The objects of interest are segmented using a deep
learning pipeline that also estimates their distances (from the camera) [15]. Each camera view provides one or
many rays shooting to the objects of interest. The MRF model is optimised to perform a binary decision for
each node concerning its occupancy by the object of interest (i.e. 0 = no object, 1 = object present). For more
information, please refer to [15]. Our contribution in this paper is in providing more accurate GPS coordinates
for the camera positions (than originally available in the image metadata) thanks to SfM, hence improving
the geo-location of the nodes on this MRF and ultimately improving the accuracy of GPS coordinates for the
objects of interest.

3.3 Post-processing

Because of the inaccuracies of the rays that define the MRF nodes, the same object may be associated with
multiple nodes (Fig. 4 left) located in the same vicinity on the MRF graph. To resolve this issue Krylov et
al. [15] added a hierarchical clustering step after optimising the MRF to merge close positive sites together.
The final position is the average of sites in the cluster. However, we have observed that some of the positive

Figure 4: On the left figure, the red dots are positive intersections from MRF. The location of ground truth
are shown in black dots. On the right figure, the green dots are the result after clustering process. Probability
density function is applied to demonstrate the points’ density of the intersections. The color code from blue to
yellow means the number of intersections from small to many.

sites were situated at improbable areas, for example, in the middle of the road. Therefore, we propose here to
use OSM data to act as a useful prior for an area. As our objects of interest (e.g. traffic lights) are static and
are located on a side of the road, we apply the following rule: the object of interest can not be located in the
middle of the road, or around the edge of a building. The OSM data has building and road classes represented
by polygons and lines, respectively. A Normal kernel is fitted at each OSM node (cf. Fig. 5). Suppose a cluster
C containing n positive sites C = [c1,c2, ...,cn], W (x) is the function to query the weight that corresponds to the
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particular site in C and depends on the OSM nodes Nx within the close proximity of the site x. The position P
(equation 2) can be refined using a weighted average where certain sites are penalized with small weights.

W (x) = 1°min

√
1,

X

µ,æ2Nx

°exp

√
°

°
x °µ

¢2

2æ2

!!
and P =

Pn
i=1 W (ci )£ ciPn

i=1 W (ci )
(2)

The æ stands for the standard deviation in meters and the µ is the node centre obtained from the OSM data.
The æ is set to 2 meters for roads and 1 meter for building edges. The resolution of the Gaussian grid is 25
centimetres.

3.4 Implementation

SURF descriptors [4] are used and in each view, 6,000 features are extracted. We employ FLANN (Fast Library
for Approximate Nearest neighbours [18]) to match the SURF features between rectilinear views. RANSAC
is used to remove outliers. We use the OpenSfM 5 to calibrate camera poses and Crese [2] as our solver to
optimize the £. As the nodes from raw OSM data are not equally distributed, we interpolate the nodes every 5
meters in QGIS 6 to get a dense distribution of the map prior.

4 Experimental Results

To validate our approach, we have used 896 GSV images (112 panoramas split into 8 images each) collected in
Dublin city centre. The object of interest corresponds to a traffic light. We fine-tuned the input camera poses
using the SfM (cf. Fig. 5). Our method corrected the bearing and position information on average by 4.36
degrees and 0.71 meters respectively. Moreover, the use of the OSM prior results in an average refinement of
the prediction by 0.17 meters.

#Actual #Detected TP Precision" Recall" F-measure" error#
Geo-localization

error#(with OSM)
Geo-localization

no correction [15]
76 94 58 0.61 0.76 0.68 2.71 2.64

correction on ø only
76 89 57 0.64 0.75 0.69 2.79 2.74

correction on R and ø
76 92 54 0.57 0.72 0.64 2.53 2.48

Table 1: We evaluate the impact of metadata correction by a comparison with results that do not use any pose
correction. By correcting the full camera pose (R and ø), the geo-location accuracy reaches error of around 2.5
meters to a reference point. It outperforms the result with no correction by 18cm, and 16 cm after applying the
OSM prior. We reach the highest F-measure if only the ø is corrected.

By using our SFM module we can check the impact of the following correction of the metadata: correction
on ø only (i.e. GPS location of the camera), correction on R and ø (i.e. correction of both GPS location and
bearing of the camera). To validate our approach, we use the original metadata as our baseline for comparisons.
Table 1 shows the testing results in terms of geo-localization error and precision and recall detection metrics.
We consider traffic lights to be recovered accurately (true positive) if they are located within 6 meters from the
reference position, otherwise it is viewed as a false positive. The geo-localization error measures the average
Haversine distance between the prediction and its reference target in meters. A small distance indicates accurate
position prediction.

5https://github.com/mapillary/OpenSfM
6https://www.qgis.org/en/site/

Proceedings of the 23rd Irish Machine Vision and Image Processing conference IMVIP 2021

September 2-3 , 2021, DCU 69 978-0-9934207-6-4



We compare our results with related public asset geo-location approaches in Table 2. The proposed tech-
nique reaches the smallest positional error, however, the results are not directly comparable due to the different
complexity of the scene and detected objects.

Comparison with other methods
Method Dataset F-measure" Geo-localization error#
Siamese CNN [21] Pasadena [28] 0.51 3.13
Siamese CNN Mapillary [22] 0.72 4.36
GNN-Geo [19] Pasadena 0.64 2.75
GNN-Geo Mapillary 0.87 4.21
Ours DTL [15] 0.64 2.48

Table 2: In comparison with other approaches, our method achieves the smallest geo-localization error, although
the other datasets might be more challenging for object detection.

5 Conclusion

We have shown that by denoising metadata associated with street view imagery using SfM, and by using context
information such as road and building shapes extracted from OSM, assets of interest can be geolocalized with
higher accuracy. Currently, our pipeline is geotagging one class of objects at a given time, and future work will
investigate multiple static object class tagging with additional priors associated with their relative positioning
in the scene, to improve further geolocation accuracy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: The figure (left) shows the prior map information overlaid on an aerial image. The normal kernel is
applied to each node that is imported from OSM. The heatmap outlines improbable object locations that will
have a smaller contribution towards the weighted sum. On the (right) yellow dots are the positions taken from
image metadata and the blue dots represent their corrected versions with SfM.
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CLADA: Contrastive Learning for Adversarial Domain Adaptation

Richard Greene and Kevin McGuinness
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Abstract

This paper focuses on the challenging problem of unsupervised domain adaptation of synthetic data for
the semantic segmentation task of autonomous driving scenes. It is motivated by the generative adversarial
methods that apply image-to-image translation by learning a mapping between the source and target domains.
Fully supervised training of deep models for semantic segmentation do not generalize well to unseen target data.
By applying domain adaptation, a model can be fit that generalizes to the target domain. Previous work has
shown that combining generative adversarial networks with cycle consistency is effective for mapping images
between domains, which can then be used to train a domain invariant semantic segmentation model. However,
this requires additional networks to implement the cycle-consistency constraint. This paper proposes replacing
this with a more efficient contrastive objective for the semantic segmentation task. By reducing the training
time and computational resources, more complex end-to-end domain adaptation architectures may be used.

Keywords: Deep Learning, Generative Adversarial Network, Domain Adaptation, Contrastive Learning

1 Introduction

Deep convolutional neural networks have produced impressive results in many computer vision tasks, such as
image classification, segmentation, object detection, and image generation. Semantic segmentation, in particular,
has been substantially improved in recent years and has several important applications, including autonomous
driving systems. This research focuses on the semantic segmentation of dashcam images captured by a vehicle
to assign a semantic label to each pixel, e.g. road, vehicle, building, pedestrian, etc.

Supervised learning is the most common approach to fitting a semantic segmentation model. Using a large
labelled dataset, a model can be trained to classify each pixel of the input based on the labels provided. Generating
the large datasets required for autonomous driving perception tasks is, however, time consuming and expensive,
due to the time and cost associated with manually annotating these datasets with dense pixel-level labels. This
supervised approach also assumes both training data and unseen test data are drawn from the same distribution.
If this assumption is violated, the model trained on the source data will fail to generalize to unseen test data due
to the differences between the two distributions. This is commonly referred to as domain shift.

Domain adaptation is a type of transfer learning that attempts to reduce this domain shift, with the aim of
transferring knowledge learnt from labelled data in a sourced domain to another target domain, where labelled
data may be unavailable. By leveraging 3D graphics engine technology, commonly used for game development,
large amounts of synthetic training images and corresponding labels can be generated in a fraction of the time and
cost compared to collecting and hand labelling real world dashcam imagery. A semantic segmentation model can
be fit using this synthetic dataset, and domain adaptation techniques applied to reduce the domain shift. Domain
adaptation attempts to ensure the models’ performance does not drop in the target domain when trained only with
the synthetic source domain data. Successful domain adaptation eliminates the need for labelled data in the target
domain allowing models to be trained using more cost effective and larger scale synthetic datasets.

This research focuses on the adversarial image-to-image translation approach to unsupervised domain adap-
tation of synthetic dashcam images, where ground truth labels are only available in the source domain. The goal
is to learn a task model that performs well in an unseen target domain. A new contrastive learning based objective
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function is proposed as a more efficient alternative to the cycle consistency loss commonly used. We refer to
our full network architecture and approach as CLADA, which includes both pixel-, and feature-level domain
adaptation to train a target semantic segmentation task model (See Figure 1). Our full approach requires less
computational resources, leading to reduced training time.

2 Related Work

Several approaches have been taken to solve the domain adaptation challenge and deep learning methods have
shown great progress by discovering domain invariant feature representations or by mapping images between the
source and target domains [Shrivastava et al., 2017, Bousmalis et al., 2017, Li et al., 2019, Hoffman et al., 2018].
Earlier domain adaptation approaches focused on alignment within the feature space using some distance metric be-
tween the first- or second-order statistics of the source and target domains. By aligning the feature space representa-
tions of both domains, such that the feature embeddings follow the same distribution, a domain invariant model that
generalizes better to the target domain can be learned [Sun and Saenko, 2016, Tzeng et al., 2014, Long et al., 2015].
Domain adversarial objectives have also been applied to feature space alignment, where a domain classifier
is trained to distinguish between the source and target representations [Ganin et al., 2016, Tzeng et al., 2017,
Tzeng et al., 2015, Ganin and Lempitsky, 2015].

More recently, further improvements have been made by approaching domain adaptation as a pixel-level
image-to-image translation problem, leveraging the progress made by generative adversarial networks (GAN)
[Goodfellow et al., 2014] in the image synthesis and style transfer domains. Earlier GAN based approaches to
image-to-image translation required paired image samples [Isola et al., 2017], which would not be practical for
the autonomous driving perception task.

Shrivastava et al. [Shrivastava et al., 2017] proposed SimGAN to translate unpaired images from synthetic
source images to a target domain with the introduction of an additional self-regularizing function. This approach
is successful in domains where there is a limited domain shift in pixel space. The addition of this L1 reconstruction
loss for the generator during training preserves the annotations of the source data by penalizing large changes to the
global structure during translation. Preserving this structural content is essential in pixel-level domain mapping,
otherwise the source annotations would not accurately represent the new translated data used for supervised
learning of the semantic segmentation model.

Zhu et al. [Zhu et al., 2017] introduced CycleGAN, which proposed a learned mapping applied to an input
x in both directions should be cycle consistent. That is, mapping a sample x from the source domain X to a
target domain Y using a learned mapping function Gs!t , and then mapping back to the source domain using a
learned mapping function Gt!s , the result should be consistent with the original input x. CycleGAN uses the L1
distance to measure the reconstruction error, which they call cycle consistency loss. The forward and backward
consistency constraint is used to train the generator model along with the original discriminator GAN loss. Zhu et
al. [Zhu et al., 2017] reported better results for several image translation experiments when compared to SimGAN.
CycleGAN, however, requires additional generator and discriminator models to implement cycle consistency,
which results in higher computational requirements and time during training.

Hoffman et al. [Hoffman et al., 2018] proposed CyCADA, a combined approach to domain adaptation for
the semantic segmentation task by applying both feature space domain invariant feature learning and pixel space
domain mapping. CyCADA separates domain adaptation into two sequential steps. First, performing image
translation from the source to target domain with a CycleGAN, and then further decreasing the domain gap by
adding a domain adversary to the features of the semantic segmentation model. The advantage of pixel space
adaptation is that it is more human interpretable, which allows visualizing the progress of the model as it is trained.
This approach allows for interpretability at the pixel level, while also regularizing the feature level.

Li et al. [Li et al., 2019] introduced a bidirectional learning framework that uses both a CycleGAN-based
image translation network and a segmentation adaptation network, similar to CyCADA. However, an end-to-end
bi-directional training process was used, requiring more resources to train the closed-loop end-to-end architecture.
Park et al. [Park et al., 2020] recently proposed a new image translation approach, introducing an alternative to
the cycle consistency loss that does not require the additional generator and discriminator models for the two-way
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Figure 1: Proposed CLADA architecture overview: pixel-level GAN losses are in (blue), the PatchNCE loss in
(green), the semantic segmentation task loss in (purple), and the additional feature-level GAN loss in (orange).

cycle consistency calculation. A multilayer patchwise contrastive loss (PatchNCE) is used to learn a one-way
unpaired image translation that maintains the content of the input image while allowing the appearance to be
adapted. The authors suggest that this alternative method is faster and requires less computational resources than
a CycleGAN, which relies on additional auxiliary networks. Park et al. [Park et al., 2020] claim that their full
method, including an additional identity loss, is 40% faster and 31% more memory efficient than CycleGAN
at training time. The results shown in [Park et al., 2020] strongly suggest that PatchNCE could provide a more
efficient alternative to cycle consistency in domain adaptation.

Motivated by [Park et al., 2020] and [Hoffman et al., 2018] this research evaluates the impact of replacing
cycle consistency with a PatchNCE loss for unsupervised domain adaptation of synthetic autonomous driving
dashcam images, which are then used to perform supervised learning for semantic segmentation. It shows that
competitive results can be achieved for the semantic segmentation task using a simplified model architecture
and less resources, producing faster training times. To our knowledge, no study has evaluated this approach on
unsupervised domain adaptation for semantic segmentation.

3 Approach

Provided with source data X and ground truth labels, and target data Y , with no labels, the aim is to learn a task
model Ft that when trained on the source data can correctly predict the semantic labels for the target data. Figure 1
shows the proposed architecture.

Similar to the staged-based approach taken by [Hoffman et al., 2018], we begin by fitting an image translation
model G (identical to Gs!t in [Hoffman et al., 2018]) that will apply pixel level domain adaptation to reduce the
domain gap between the source and target data. This model G is trained using a generative adversarial approach
where it learns to map source images to the target domain, thus fooling an adversarial discriminator D based on
the GAN loss:

LGAN(G ,D,X ,Y )=EyªY log D(y)+ExªX log(1°D(G(x))). (1)

To preserve the content structure of the source samples xs , many previous approaches have used the cycle
consistency loss. Here we propose to replace this with the contrastive learning based PatchNCE loss proposed by
[Park et al., 2020]. This is based on a type of contrastive loss function, the InfoNCE loss [Oord et al., 2018], which
aims to learn an encoder that associates corresponding patches with each other. The aim is to match corresponding
patches between the input and output images. For example, a patch in the input image showing a traffic light
should be associated with the corresponding patch showing a traffic light in the translated image. [Park et al., 2020]
propose selecting multiple positive and negative pairs of patches from several layers within the feature stack of
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Figure 2: Multilayer patchwise contrastive loss.

the encoder Genc based on the normalized temperature scaled cross-entropy (NT-Xent) loss:
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where v , v+ and v° are patches taken from layers and spatial locations within the feature stack of the image
translation generator and ø is the temperature. By feeding the feature maps into a small multi-layer perceptron Hl

and selecting 1 positive and N negative samples from a number of spatial locations, an (N+1) way classification
problem is setup. The contrastive loss (PatchNCE),
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can then be calculated and fed back to the generator during the training cycle. L represents the layers within the
generator Genc passed to Hl , Sl represents the spatial locations within each layer, and ẑ s

l , zs
l and zS/s

l represent
the query, positive and negative patches respectively. This bypasses the need for a predefined similarity function.
Figure 2 shows an overview of this multilayer patchwise contrastive loss architecture.

Park et al. [Park et al., 2020] introduces two variants of their architecture, which they refer to as CUT and
FastCUT. Their CUT model includes an additional identity loss to impose a content structure constraint and selects
N =256 patches from L=5 layers of the encoder, where FastCUT omits the identity loss and selects only N =16
patches from within each layer. These proposed L and N values were also chosen for our CUT and FastCUT model
variants in our experiments. FastCUT also applies a weight, ∏, to the PatchNCE loss to constrain the content
structure in the absence of the identity loss. The resulting loss function is

LGAN(G ,D,X ,Y )+∏X LPatchNCE(Genc,H ,X )+∏Y LPatchNCE(Genc,H ,Y ). (4)

For the CUT model, ∏X and ∏Y are set to 1.0 to jointly train with the identity loss. [Park et al., 2020] proposes
using ∏Y = 0.0 for FastCUT to omit the identity loss and ∏X = 10.0 to compensate for its absence. We found
∏X =10.0 too high in our experiments: qualitative results showed the model failed to translate the Cityscapes style,
resulting in images more similar to the source GTA5 data. Reducing ∏X to 5.0 improved the image translation
results. We refer to this model variant as FastCUTL5 in the remainder of the paper.

Once an image-to-image translation model for producing translated images that are similar to images in the
target domain has been fit, the learned model G is used to generate a new translated dataset. This new translated
data, along with the corresponding source labels, is used as training data for the next stage, where a fully supervised
learning approach is taken to train a target semantic segmentation model Ft .

Lastly, additional domain adaptation is applied within the feature embedding space of the task model Ft using
a domain adversarial approach. By introducing a feature level GAN loss, we fit a discriminator Dfeat that can
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Figure 3: Image translation: GTA5 source input and translation models output examples. We observed all
models successfully transferred the Cityscapes saturation levels and textures, such as the smoother road surface.

distinguish between the feature embeddings of inputs from the translated source and target datasets, when passed
through the task model Ft , and feed that back to the task model during a round of fine tuning.

4 Experiments Model FID Time

Source 68.6 –
CycleGAN 28.6 426ms
CUT 29.4 321ms
FastCUT L5 33.2 170ms

Table 1: Fréchet Inception Dis-
tance (FID) and training time for a
single iteration.

We evaluate our approach on the challenging unsupervised adaptation of the
GTA5 [Richter et al., 2016] to Cityscapes [Cordts et al., 2016] datasets for
the semantic segmentation task. Given that the ground truth labels are only
available for the source GTA5 dataset, a task model is fit and its performance is
evaluated in the target Cityscapes domain, where labelled data is available in
a validation set. GTA5 is made up of 24,966 synthetic images extracted from
the GTA5 computer game, with corresponding semantic labels at 1914£1052
resolution. Cityscapes provides real world dashcam images captured in
Germany, and is split into train, validation, train extra and test sets at a resolution of 2048£1024. The train split has
2,975 images with dense ground truth labels, the validation split has 500 images with dense ground truth labels,
and the train extra has 19,998 images without labels. Given that no labels are available for the test split, we use the
validation split to evaluate our models performance.

Similar to CyCADA, a staged based approach is taken in which the image translation models are trained first.
This allows us to interpret the progress of the pixel-level domain adaptation stage, and qualitatively evaluate the
impact of replacing cycle consistency loss (CCL) with PatchNCE before proceeding to subsequent stages that
include training the task model Ft and further adaptation in feature space.

We trained a CycleGAN using the network architecture and training procedure from CyCADA. The images
were resized to a width of 1024, maintaining the aspect ratio, from which random 400£400 crops were taken as
input. The model was trained with a batch size of 1 for 400k iterations with a learning rate of 2£10°4. After 200k
iterations, the learning rate was linearly decayed to 0. The same procedure was used to train additional CUT and
FastCUT models, where CCL was replaced with PatchNCE loss. As discussed ∏X =10 for the PatchNCE loss was
found to be too high for the GTA5-Cityscapes task; reducing it to ∏X =5 achieved better results.

Following initial domain adaptation at the pixel-level, all models produced good quality images when translated
to the Cityscapes appearance (Fig 3 illustrates an example). In particular, we noted that our CUT based models
learned to adapt similar characteristics of the target Cityscapes domain to those adapted by CycleGAN, such as
the image saturation levels, contrast and texture. All models, for example, learned that the road surface is much
smoother in the target Cityscapes domain. We also noted that both the CycleGAN and full CUT model attempt to
transfer the hood ornament, but FastCUT was not as prone to this. This is likely due to the lack of the additional
identity loss, which may cause such features to be transferred.

Once all image translation models were trained and producing good qualitative image translation results, the
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Figure 4: Semantic segmentation: a test image (a) along with the corresponding source only model (b) predictions;
our CLADA model (c) predictions and the ground truth masks (d).
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Source Only 31.3 14.0 54.2 10.9 9.8 21.8 21.4 4.9 76.5 19.5 66.2 41.9 2.2 53.5 13.8 5.6 0.0 2.8 0.0 23.7 44.7 56.4
CycleGAN 78.9 30.4 75.6 20.5 1.3 29.5 24.3 0.0 80.3 32.2 69.2 48.0 0.0 78.9 24.6 31.0 0.0 0.0 0.0 32.9 71.0 79.2
CUT 77.4 27.2 75.1 18.4 17.9 27.9 0.0 0.0 80.4 29.8 72.9 47.6 0.0 79.6 28.3 28.6 0.0 0.0 0.0 32.2 70.4 78.4
FastCUT L5 78.6 32.1 76.8 24.1 19.6 24.9 11.4 13.1 79.4 31.2 73.2 47.0 5.7 80.0 22.6 27.3 0.0 0.3 0.0 33.4 71.4 79.0
CLADA (FastCUT L5 + FeatAda) 79.9 31.0 76.8 24.5 18.7 28.0 24.4 12.7 79.6 31.6 72.2 51.0 11.7 81.5 29.9 33.9 3.4 7.6 0.0 36.8 72.2 80.3

Oracle 92.1 68.0 84.6 41.2 41.9 44.2 32.7 51.4 87.9 48.2 87.5 67.6 41.3 89.7 50.8 59.3 42.5 1.2 61.8 57.6 84.8 89.5

Table 2: GTA5-Cityscapes semantic segmentation task model evaluation results showing IoU for individual classes
and mean IoU, frequency weighted IoU and pixel accuracy.

full GTA5 dataset was used to generate new translated datasets using each trained image translation model. A
qualitative and quantitative evaluation was then performed. Each of these new translated datasets were compared
to the Cityscapes data and the Fréchet Inception Distance (FID) [Heusel et al., 2017] calculated. Table 1 shows
the results, and illustrates that, based on the statistical comparison between the translated datasets and the target
Cityscapes data, the adapted images are more similar to Cityscapes than the original GTA5 images. Training time
was measured and shown to be reduced when using the contrastive approach, in particular for the FastCUT variant
that omits the identity loss. We found FastCUT is 47% faster than CUT and 60% faster than CycleGAN during
training, where CycleGAN takes 426ms per iteration and FastCUT only takes 170ms (see Table 1).

The new translated datasets are then used in the next stage where we trained our task semantic segmentation
models. The goal is to train a task model Ft that performs well when evaluated on the Cityscapes validation split.
Each task model is evaluated using three metrics: mean intersection-over-union (mIoU), frequency weighted
intersection-over-union (fwIoU) and pixel accuracy (pixel acc.):

mIoU= 1
N

·
P

i ni i

ti +
P

j n j i °ni i
fwIoU= 1P

k tk
·

P
i ni i

ti +
P

j n j i °ni i
pixel acc.=

P
i ni iP
i ti

, (5)

where N is the total number of classes, ni j is the number of pixels of class i predicted as class j and ti =
P

j ni j is
the total number of pixels of class i .

For the semantic segmentation task, we use an EfficientNetB3 [Tan and Le, 2019] model, pretrained on
ImageNet [Deng et al., 2009], as an encoder within a U-Net [Ronneberger et al., 2015] architecture. Each task
model was trained with a batch size of 8 for 120k iterations with an initial learning of 2£10°4, which was stepped
down to 10°5 for the final 40k iterations. The same training procedure was used for all model variants, with the
encoder frozen for the first 40k iterations. The Source Only and Oracle models were used to set lower and upper
bounds on the achievable accuracies. The Source Only model was trained using the original GTA5 data and labels
and the Oracle model was trained using the Cityscapes data and dense ground truth labels provided in the train
split. We then trained our semantic segmentation task models using each of the translated datasets created using
our CycleGAN, CUT, and FastCUTL5 image translation models. Finally, each of these trained task models was
evaluated on the Cityscapes validation split using our task evaluation metrics (see Table 2).
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Source Only 60.8 54.0 30.5 30.3 32.1 22.4 11.3 46.5 11.4 28.7 21.3 25.7 39.1 36.2 37.0 53.7 42.5 -1.6 61.8 33.9 40.2 33.1
Ours (CLADA) 12.2 37.0 7.8 16.7 23.2 16.2 8.3 38.7 8.3 16.6 15.3 16.6 29.6 8.2 20.9 25.4 39.1 -6.4 61.8 20.8 12.6 9.2

% Performance Gain 79.9 31.5 74.4 44.8 27.8 27.8 26.7 16.7 27.4 42.2 28.1 35.4 24.3 77.4 43.6 52.7 8.0 - 0.0 38.7 68.6 72.2

Table 3: Performance gap for the source only model and our full CLADA model, when compared to the oracle
performance. The % performance gain is also shown for our full CLADA model versus the source only model.
Note: for the motorcycle class, our model outperforms the oracle

The final end task results achieved using PathNCE during the image translation stage are comparable to
those achieved with a CCL based CycleGAN. All models perform well on common classes. The performance
of all models is poor for the train and bicycle classes due to these classes being under represented in the dataset.
Semantic mask predictions (Fig 4) show qualitative results that correlate with the quantitative results. At this stage,
FastCUTL5 has slightly better results, and has closed the performance gap for mIoU by approx 29%, which is
competitive to CycleGAN and suggests that the PatchNCE contrastive objective is a viable replacement for CCL if
faster training times is required, which may also lead to reduced training costs.

To further close the performance gap with the upper bound, as per [Hoffman et al., 2018], we performed further
domain adaptation in feature space using a domain adversarial approach where we fine-tuned the FastCUTL5
model using a domain discriminator to classify the feature embeddings of the intermediate layer of the task model
when source and target data are used as input. The final model, which we call CLADA, was evaluated using the
same procedure and metrics and the results show the mIoU gap is closed by a further 10% (see Table 2). Overall,
CLADA recovers approx, 39% mIoU lost to domain shift for the target segmentation task. In some cases, for well
represented classes such as road, building, and car, it recovered >70% of the IoU performance lost (Table 3).

5 Conclusion

Our experiments show that by using a contrastive learning based objective function, PatchNCE, similar results
to cycle consistency loss can be achieved for the challenging GTA5-Cityscapes semantic segmentation task,
with faster training times and using a simplified model architecture. For the full approach, CLADA, the image
translation stage is 60% faster during training and recovers approximately 39% of the mIoU performance lost
to domain shift for the target semantic segmentation. By reducing the resources, costs, and time required to
train generative adversarial domain adaptation models, our findings support further research into more complex
end-to-end image translation approaches to domain adaptation of synthetic data for semantic segmentation.
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Abstract 

Early detection of cancer is crucial to patient recovery, thus screening programs have been developed 
to spot signs of cancer before it becomes detrimental to health and life expectancy. These programs cause 
additional burden on already overworked clinicians so computational solutions were developed to reduce 
the load. Deep learning has paved the way for high accuracy techniques that aid the clinical diagnosis 
though most require large amounts of highly curated data which sometimes can be insurmountable to new 
stakeholders entering the field. We seek to investigate image input hyperparameters while comparing state-
of-the-art algorithms for mammogram detection to tailor a patch classifier to show that with an insight in 
the data high accuracy can be achieved with a small dataset. 

 
Keywords: Imaging, Image Processing, Machine Vision, Breast Cancer, Mammograms 

1 Introduction  

The World Health Organisation (WHO) states that cancer is the leading cause of death in the in the world accounting 
for an estimated 9.6 million deaths in 2018 [“WHO cancer key facts” n.d.]. Breast and Colorectal, being the second 
and third most common respectively after lung [“WHO cancer key facts” n.d.]. WHO also estimates that 30-50% 
of cancer deaths can be avoided by following current prevention strategies. Early  detection is key to avoiding the 
more serious cases [“WHO cancer key facts” n.d.]. 

With the goal of early detection, the National Health Service (NHS) screening programs have been 
introduced to proactively diagnose cancer and thus avoid some of the serious cases. In the UK two of the largest 
cancer centric programs are the Breast Cancer Screening Program [Cancer 2006] and the Bowel Cancer Screening 
Program [Logan et al. 2012] involving the areas of mammography and digital pathology. The availability of images 
in these fields opens the opportunity of easing the burden on the medical professionals by turning to computational 
analysis methods. Specifically, we will be focusing on mammograms in this study. 
 The aim of this paper is to investigate the image input hyperparameters, define the best state-of-the-art 
algorithm for mammogram detection and, with an understand of the outputs, explain and tailor a patch classifier to 
show that with an insight in the data high accuracy can be achieved with a small dataset. This will be done through 
an extensive study of the misclassified patches and a comparison of algorithm architectures with augmentation. For 
the mammograms analysis we used the open dataset MIAS [Lee et al. 2017] containing 322 annotated images. 

2 State of the Art 

There are many techniques available to physicians to examine the breast, which cover a plethora of different 
technologies such as Conventional radiography, Mammography, Computed Tomography, Ultrasound, Magnetic 
Resonance Imaging [WHO 2020] among others. Despite this, mammograms are the most used method as they are 
highly effective at detecting breast cancer before it becomes clinically palpable.  

Historic studies have shown that mammogram reading and diagnosis is susceptible to false positive and false 
negative reading [R E Bird, T W Wallace 1992][Kerlikowske et al. 2000]. To mitigate these issues the possibility 
of double reading was theorised [E L Thurfjell, K A Lernevall 1994], but this subsequently creates a greater load 
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on the consultant as now the images have to be seen twice. Mammograms over the years have changed from Screen 
Film Mammography to Digital Mammography allowing higher quality images and greater availability of data. With 
this greater availability, computational techniques have been introduced as part of the diagnostic workflow. These 
systems are classified as Computer Aided Detection or Diagnosis (CAD) systems [Markey & Bovik n.d.). Initial 
CAD systems centred around basic image enhancement and clustering techniques to flag the relevant cases by 
varying the image properties. This allows to better visualize the micro calcifications(MC) present in 30-50% of 
mammograms, which are indicators of potential cancer [Linguraru et al. 2006; Nishikawa et al. 1995; Tang et al. 
2009].  

More recently with the advent of high-powered computing, accessibility to data and large amounts of storage, 
researchers have turned to more advanced so-called Machine Learning (ML) techniques, with special emphasis in 
Deep Learning (DL) in the later years. Sampaio et al. [Borges Sampaio et al. 2011] theorized the possibility of using 
a simple convolutional neural network (CNN) in conjunction with a support vector machine (SVM) to initially 
improve the image and them extract certain objects outside the breast for classification.[Jadoon et al. 2017; Shen 
2017]. For CNNs one of the most widely used methods is classification according to the BI-RADS scale, which 
ranges from 0 (needing more imagery), to 6 (known biopsy-proven malignancy) [He et al. 2017; Huang et al. 2019]. 
Other combinations of state-of-the-art architectures have been shown to be highly efficacious when used with 
mammogram images. Chin et al. [Chin & Liu 2019] used a combination of residual layers [He et al. 2016] and 
Inception V2 layers [Szegedy et al. 2015] to predict and safely monitor patients with pure atypical ductal hyperplasia 
on a dataset of 298 images and reached an AUC score of 0.86 concluding that a larger dataset would improve on 
these results further. 

Kooi et al. [Kooi et al. 2017] also saw the need of more data for mammography analysis and collected a 
44000 image dataset in the Netherlads to evaluate a CNN against the common CAD systems. They adapted the 
VGG architecture using a scaled down version and also did up to 16x augmentation on the image patches extracted 
from the mammograms meaning that around 1.3 Million images were used in training. This achieved a AUC score 
of 0.929 which was better when compared to 3 radiologist who had a mean AUC of 0.911. Finally and international 
evaluation was published in 2021 using over 25000 mammography images from the UK and the US as training data 
and it generated state of the best results so far in the field, outperforming the radiologists themselves [McKinney et 
al. 2020]. Since large amounts of highly curated data can be insurmountable to new stakeholders entering the field, 
we seek to show that with an insight in the data high accuracy can be achieved with a small dataset. 

3 Method 

In order to ensure the size of the CNNs is manageable and reduce the computational burden, we approached the 
problem of classifying anomalies in mammograms as a patch classifyer, similarly to Shen et al. [20]. The original 
dataset was divided into smaller patches for input into the algorithm. These patches are separated in two categories, 
anomalous and normal. The definition of an anomalous patch is if its centre of mass is within the area of anomaly 
set out in the original ground truth, the ground truth had 6 classes which we joined into one anomaly class. Negative 
patches are chosen at random in equal numbers as the anomalous patches to ensure a 50/50 split. 

Since experiments are carried in a patch classifier format, we investigate and optimise the best data ingestion 
hyperparameters (patch size and step between patches) to ensure the best outcome in the algorithm comparison. As 
the scaled VGG16 had already shown promising results in mammogram anomaly detection [Kooi et al. 2017], this 
architecture was used initially as baseline to test three different step sizes and four different patch sizes. These 
experiments were done using 5-fold cross validation – 80/20 split for training and validation- with an additional 
10% saved for the final testing of the best architectures. All algorithms were run on 100 epochs, the specific 
breakdown of hyperparameters and train, validation and test sets can be found in section 5.2. 

After the initial CNN architecture was developed and refined using,, three state-of-art achitectures were 
compared: a breast tissue focused algorithm CancerNet [Rosebrock 2019]  (a combination of Mobilenet[Howard et 
al. 2017] and the Xception[Chollet 2017] architecture),a scaled VGG16[Simonyan & Zisserman 2015] similar to 
Kooi et al. [Kooi et al. 2017] and ResNet50[He et al. 2016]. Once the best algorithm was defined for this particular 
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problem augmentation was also tested to see if there was any improvement. 

4 Scaled VGG architecture 

A scaled VGG model was used due to a reduced computational burden and the need or large dataset.  Given that the 
mammograms analysed are greyscale, similar scaled algorithm methods have been shown to produce good results 
in mammogram analysis [Ribli et al. 2018; Tardy et al. 2019].   

The basis to the VGG format is the convolutional layer that with a stride of one and padding can be 
described as follows: 

 !"!,#,$ = $ %"%,&,',$ 	C!(%)*,#(&)*,'
%,&,'

 (1) 

 
where %" is the convolutional kernel of size (+ ×	(+ × * × +, ( being the spatial dimension of the convolution %, 
* the number of input channels and + is the depth of the output channels. The standard convolution kernel % is 
multiplied by the input feature map , generating the feature map !" . 
 The network used is composed of three blocks of two convolutional layers each with number of filters 64/64 
- 128/128 - 256/256, and two blocks of three convolutional layers each with number of filters 512/512- 512/512. 
The kernels of all convolutional filters are set to 3 × 3, each convolutional layer has a ReLU activation and there is 
max pooling at the end of each block. Finally, after the convolutional network, there are two dense layers of 4096 
with ReLU activation. For the classification the result of dense layers has been fed to a 2-classes prediction layer 
with sigmoid activation. 

4.1 Dataset 
The dataset used was the MIAS dataset [Lee et al. 2017], comprising of 322 mammogram images all of size 
1024x1024 pixels. Each image has ground truth information by two radiologists where the background tissue, the 
abnormality, the severity of the abnormality and its location are described. The abnormalities are relatively evenly 
distributed in the dataset among: 

• Calcification 
• Well-defined/circumscribed masses 
• Spiculated masses 
• Other, ill-defined masses 
• Architectural distortion 
• Asymmetry 
• Normal  

with calcifications being the most represented and Ill-defined masses the least. The 6 abnormal classes where joined 
in to one class as from a clinician standpoint removing their need of seeing normal reduces workflow. 

In accordance with the location of the anomaly on the ground truth, the images are then divided into smaller 
patches for ingestion into the algorithm. Patches with large amounts of background were removed through a simple 
averaging technique.  These patches are divided into two categories, anomalous and normal. The definition of an 
anomalous patch is if the centre of mass is within the area of anomaly set out in the ground truth and the negative 
patches are chosen at random in equal numbers as the anomalous patches to ensure a 50/50 split. 

4.2 Data augmentation 
Data augmentation was applied at random as the patches were read into the model. Data augmentation techniques 
included flips, rotation, zoom, width and height shift, brightness, shear and contrast (see sample augmentation on 
one patch in Figure 1). This resulted in a 16x augmentation of the dataset. 
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5 Experimental section 

In the field of cancer diagnosis, the overarching aim is to eliminate false negatives, in other words, miss no malignant 
anomalies. Sometimes the cost of eliminating false negatives can lead to an unreasonable amount of false positives 
which in turn causes additional worry and uncomfortable procedures on the patient’s side, thus an analysis has to 
be done to ascertain the lowest values possible for both these parameters.  

This study uses a patch classifier approach to ascertain the effects of varying the initial input 
hyperparameters and then compare the current state-of-the-art algorithms with and without augmentation. 

For every test a 5-fold validation technique was used. First10% from the complete dataset was taken 
randomly for a final test dataset. With the remaining 90% divided up into five different groups, the algorithm was 
trained on 80% and validated on 20% five different times and then the results averaged over the 5 folds. The fold 
wise validation results were used to determine the hyperparameters and the testing set was used in the final algorithm 
comparison. 

Using the scaled VGG16 architecture, an analysis of hyperparameters was carried out.The two main input 
parameters, Patch Size and the Step across the image, were varied independently.. The step was varied between 4, 
8 and 16, then the patch size between 28x28, 56x56, 112x112 and 224x224. Other hyperparameters used in these 
experiments were fixed and using the following values: Batch size: 64, Optimizer: SGD, Loss: Binary Crossentropy, 
Learning rate: 0.001 w/ decay, Dropout: no, Augmentation: no. 

 
Table 1 Step Hyperparameter variation results VGG16 

Step Accuracy F1 Score AUC 
4 0.9930 0.9930 0.9931 
8 0.9853 0.9853 0.9660 
16 0.8278 0.8261 0.8314 

 
Table 1 shows the results for a patch size of 224x224 and varying step sizes. As we augment the step size 

and thus reduce the number of training patches the performance of the algorithm decreases, varying from over 
137000 with a step of 4 to 8675 with a step of 16. This means a lot more training data is available for the smaller 
step input and can lead to a more robust algorithm. 

Table 2 shows the results for a step size of 4 and varying patch sizes. The 28x28 patch is a lot worse as it 
will not have as much contextual information. The other patch sizes seem to be largely equivalent but going forward 
we maintain the original intended patch size for the VGG algorithm of 224x224. 

 

Figure 1 Random 16x augmentation of a mammogram patch. 
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Table 2 Patch Hyperparameter variation results VGG16 
Patch Size Accuracy F1 Score AUC 
28x28 0.8953 0.8612 0.8803 
56x56 0.9935 0.9935 0.9968 
112x112 0.9934 0.9934 0.9971 
224x224 0.9930 0.9930 0.9931 

5.1 Patch classification analysis 
As already discussed in the dataset section, the anomalies are divided into 6 classes according to the dataset ground 
truth and are represented relatively evenly in the training dataset, except the calcification class which is around 7% 
above average. Upon analysis of the most common false negative patches, calcifications appeared over 2.5x more 
than each of the other anomalies despite a higher representation in the training data. Visual examination reveals that 
the calcifications can be very faint and occluded under other brighter tissue. 

 
Table 3 Most common false negative patches across all algorithms divided by ground truth classification 

 

5.2 Best model comparison 
In this section, we investigate the performance of different state-of-the-art architectures when looking at the MIAS 

Class of abnormality Benign Malignant 

CALC – Calcification 
 
Around 20px in size 

 

 

CIRC – Well-
defined/circumscribed 
masses 

  
SPIC – Spiculated masses   

MISC – Other ill-defined 
masses 

  

ARCH – Architectural 
distortion 

  

ASYM – Asymmetry 
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mammogram dataset and using the testing dataset for final scores. For the purpose of this study 4 different 
architectures were chosen Cancernet, Scaled VGG16, Scaled VGG16 with augmentation and ResNet50 as already 
discussed. Each architecture was trained over 100 epochs on 100,800 images, validated on 25,200 and tested on 
14,000. All had 50/50 split between the normal and abnormal class. 
 

Table 1: Comparison between state-of-the-art algorithms on the MIAS dataset on testing data 
 Hyperparameters Accuracy F1 Score AUC Score 

Cancernet 

Patch size: 224x224 
Image Step: 4 
Batch size: 32 
Optimizer: Adagrad 
Loss: Binary Crossentropy 
Learning rate: 0.01 w/ decay 
Dropout: 0.25 

0.9398 0.9397 0.85 

VGG16 

 
Patch size: 224x224 
Image Step: 4 
Batch size: 64 
Optimizer: SGD 
Loss: Binary Crossentropy 
Learning rate: 0.001 w/ decay 
Dropout: no 

0.9930 0.9930 0.9931 

ResNet50 

 
Patch size: 224x224 
Image Step: 4 
Batch size: 128 
Optimizer: SGD 
Loss: Binary Crossentropy 
Learning rate: 0.001 w/ decay 
Dropout: no 

0.9916 0.9903 0.9902 

 
 Results are shown in Table 4. As the Cancernet algorithm is one of the simplest it is to be expected that it 
would generate the lowest accuracy but was a good comparison point as it was developed for this very problem of 
breast cancer.  
 
 An additional test (Table 5) was done with the best architecture to add some 16x data augmentation this was 
also trained over 100 epochs but with 2.4 million images, and smaller validation and test sets of 37,800 and 21,000 
respectively. All had 50/50 split between the normal and abnormal class 
 

Table 2: Comparison between state-of-the-art algorithms on the MIAS dataset on testing data 

 

 Hyperparameters Accuracy F1 Score AUC Score 

VGG16 with 16x 
Augmentation 

Patch size: 224x224 
Image Step: 4 
Batch size: 512 
Optimizer: SGD 
Loss: Binary Crossentropy 
Learning rate: 0.001 w/ decay 
Dropout: no 

0.9935 0.9925 0.9948 
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Overall, the VGG16 with augmentation seemed to be best at the patch classification but it is such a small 

improvement in accuracy and AUC are hardly worth the additional computing time of 16x more training data and 
run the danger of overfitting.  

6 Conclusions 

In this paper we have proposed and investigation on different CNN architectures and input hyperparameters to 
perform patch-level mammography anomalous classification. We particularly focus on the most usual case of 
limited amount of images in training due to privacy concerns. Out of our study, these are the most relevant 
conclusions:  

• The parameter that makes the biggest difference to the quality of the model is the number of training 
patches. 

o Smaller datasets as in the 16 step model are more susceptible to abrupt colour variations of man-
made artifacts. 

o The largest datasets such as the step 4 model are robust enough to identify changes in tissue 
morphology and ignore that man-made artifacts. 

• Dense background tissue causes the algorithm the most problems from two aspects: 
o False positives – around 60% of them happened in dense tissue as it can in general have a more 

tumour like aspect. 
o False negative microcalcifications – around 60% of false negatives were microcalcifications all in 

dense tissue due to the fact of the calcifications are very faint the dense tissue can hide them form 
the model. 
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Finding people in GPS denied environments using an autonomous
drone

James O’Donnell & Gerard Lacey
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Abstract

Drones are used extensively for outdoor search and rescue as they allow teams to survey large areas
efficiently without putting themselves at risk. However, complex underground urban, cave and tunnel sys-
tems present significant challenges for first responders. These GPS-denied environments are hazardous for
personnel and difficult to navigate, especially in time-sensitive search and rescue scenarios. The DARPA
Subterranean Challenge aims to explore new approaches to map, navigate and search these complex under-
ground environments using autonomous robots. This paper describes the development of a visually guided
autonomous drone with search and rescue capabilities. The drone uses a 3 layer architecture with obstacle
avoidance, navigation and people detection. Obstacle avoidance is trained using deep reinforcement learn-
ing. Navigation uses ORB-SLAM2 and people detection is achieved using YOLO3. Tests in an indoor
environment achieved a mapping accuracy of 0.36m±0.12 and people were detected in 85% of trials.

Keywords: Autonomous drones, robotics, SLAM, people detection, DARPA Subterranean Challenge,

1 Introduction

In search and rescue (SAR), time is often the most critical factor and is coupled with the uncertainty of the loca-
tion of the missing people. Therefore, SAR services must be able to search large areas in a short space of time.
Typically, large powerful drones are used, each capable of carrying heavy payloads such as searchlights, loud-
speakers, high-quality sensors, and powerful wireless communications [Balta et al., 2017]. A greater challenge
occurs in tightly confined indoor or underground areas such as semi-collapsed buildings, caves, or subways.
In this scenario, small lightweight autonomous drones could search these GPS-denied environments more ef-
ficiently than a large piloted drone. A multi-robot approach could also be utilised, with a ground-based robot
acting as a base station for a swarm of highly manoeuvrable drones.

The DARPA Subterranean Challenge (SubT) [DARPA, 2018] takes place in human-made tunnel systems,
urban underground environments, and natural cave networks. The teams demonstrate their robotic solutions
focusing on autonomy, networking, perception and mobility, to compete for a $2 million prize. The competition
has run over the course of 3 years with the final event due to take place in September 2021. The objectives of
this paper are to develop an autonomous drone to find people in GPS-denied environments. We use a low-cost
drone with a monocular camera and an internal inertial measurement unit (IMU). We evaluate the accuracy of
the SLAM map and the accuracy of object detection and identify improvements needed to address tasks similar
to the DARPA Subterranean Challenge.
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2 State of the Art

Figure 1: The Tello drone a Wumpus robot base

Robotics search and rescue range from specialised
drones that then change shape [Falanga et al., 2018]
to networks of drones [Balta et al., 2017]. This
is a very active research area with research fo-
cused on full autonomy [Sandino et al., 2020] or
novels sensors such as omni-directional video
[Valenti et al., 2018]. The focus of our research is the
SAR capability of a single drone with a focus on au-
tonomous navigation and people detection as we in-
tend our drone(s) to be used in partnership with our
mobile robot base as in Figure 1. Our approach is
inspired by the teams competing in the DARPA Sub-
terranean challenge.

2.1 DARPA Subterranean Challenge

Each of the 12 teams competing in the DARPA SubT Challenge use a combination of SLAM and visual object
recognition. Team ’Explorer’ [CMU & OS, 2020], from Carnegie Mellon and Oregon State, use a multi-robot
approach with ground-based robots and a drone. They employ multiple sensors, including a depth sensing
camera, a thermal imaging camera, an IMU and a microphone array. For communications, they drop small
communication nodes out of the back of the ground-based robot as it travels along to establish an ad-hoc mesh
network. For mapping and localisation, they use multi-robot SLAM. Team CoSTAR [Agha et al., 2021] from
the NASA Jet Propulsion Laboratory and a consortium of universities, came runner up in the first challenge
and won the second Urban Circuit challenge. CoSTAR have a much wider range of robots, including legged,
flying, wheeled and tracked robots. Team CERBERUS made up of several research institutes including the
Oxford Robotics Institute, employs legged-wheeled robots [Bjelonic et al., 2020]. This is a hybrid approach
uses wheels or legs depending on the terrain. A few of the other teams have also published papers describing
their approaches [Rouček et al., 2019] [Hudson et al., 2021].

2.2 Obstacle Avoidance with Reinforcement Learning

To avoid obstacles the robot must choose its next action based on its current state estimate to avoid a collision.
Q-Learning [Watkins & Dayan, 1992] iteratively updates each state-action pair to find the optimal action to take
for a given state. A Q-Learning table is used to map states to actions and finds an optimal policy by maximising
the expected value of the total reward over all states. A neural network can be used to approximate the Q
function mapping states to Q-values. Deep Q-learning Networks (DQN) was introduced by Google’s DeepMind
[Mnih et al., 2015] to learn to play ATARI games. A weakness of DQN is that experience replay memory
is sampled uniformly but in [Schaul et al., 2015] experiences that lead to the greatest change in the network
are prioritised. Q-learning can sometimes overestimate the action values in noisy environments, slowing the
learning. In [Van Hasselt et al., 2016] Double Q-Learning and DDQN are combined to reduce overestimation
and improve performance.

2.3 Simultaneous Localisation and Mapping (SLAM)

SLAM has made significant progress over the last 30 years by enabling large-scale real-world applications
from self-driving cars to UAVs. ORB-SLAM [Mur-Artal et al., 2015] and the more recent ORB-SLAM2
[Mur-Artal & Tardos, 2017] are feature-based SLAM implementations for monocular, stereo and RGB-D cam-
eras. ORB-SLAM pre-processes input images and extracts features as keypoints. The input images are then
discarded and all operations take place using only these acquired features. ORB-SLAM2 works simultaneously
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on tracking, local mapping and loop closure. Tracking involves estimating the pose of the camera and deciding
when to insert a new keyframe. Mapping is the process of updating map points and keyframes. Loop closure in-
cludes candidate keyframe selection for potential loops. The algorithm uses ORB features [Rublee et al., 2011]
to perform feature matching. ORB uses a multi-scale image pyramid for feature detection using the FAST
feature detector to detect keypoints at each of these levels. The matched keypoints are converted to a binary
feature vector using BRIEF. However, ORB modifies the original implementation of BRIEF to handle rotations.

There are two widely used metrics for calculating the accuracy of SLAM algorithms on these benchmarks:
absolute trajectory error (ATE) [Sturm et al., 2012] and relative pose error (RPE) [Geiger et al., 2013]. ATE
is suited for assessing the performance of SLAM systems while RPE is suited for measuring the drift of vi-
sual odometry systems [Sturm et al., 2012]. The absolute trajectory error measures the difference between the
estimated trajectory and the ground truth trajectory.

2.4 Vision-based Object Detection

There are two categories of object detectors: one-stage and two-stage detectors. The two-stage detectors have
high localisation and object recognition accuracy while the one-stage detector achieves faster inference speed.
Two-stage detectors, such as Faster R-CNN [Ren et al., 2016], introduce a Region Proposal Network (RPN)
to generate regions of interest in the first stage. The second stage performs object classification and bounding
box regression. In a one-stage detector such as YOLO [Redmon et al., 2016] and SSD [Liu et al., 2016], object
detection is treated as a regression problem. It learns the class probabilities and bounding box coordinates
directly from the input image. These have lower accuracy but are much faster. YOLO (You Only Look Once)
results in lower accuracy than Faster R-CNN but faster, e.g. 45 fps than Faster R-CNN with 7 fps. YOLO
has evolved into YOLO V2 [Redmon & Farhadi, 2017] which capable of predicting 9,000 classes of objects,
and in 2018, YOLO v3, [Redmon & Farhadi, 2018] with changes to the underlying architecture to improve
performance.

The evaluation criteria for object detection consists of frames per second (fps), precision and recall (true
positive rate). The most frequently used evaluation metric for object detection for a single object class is average
precision (AP) and to compare performance across all object categories, the mean AP (mAP) is adopted. To
measure the object localisation accuracy, ’intersection over union’ (IoU) is used. This is the overlap ratio
between the predicted bounding box and the ground truth box. The ratio is typically greater than a predefined
threshold of 0.5 [Liu et al., 2019].

3 System Design

The robot system consisted of a low-cost Tello drone and a MacBook Air with a 1.6 GHz Intel Core i5 processor
and an Intel HD Graphics 6000 graphics card. The Tello performed three key tasks: obstacle avoidance,
mapping and object detection. The architecture is based on three layers: Functional, Executive and Planner. The
Functional layer provides autonomous obstacle avoidance and typically interacts with the hardware. Obstacle
avoidance is trained using the DQN algorithm in a PEDRA simulator and then fine-tunes this in the real-world
environment. The Executive layer uses ORB-SLAM2 to build a map and localise the drone in real-time. Finally,
the Planning layer uses YOLO3 to recognise objects of interest and mark the location on the map.

The system is developed using ROS Melodic on Ubuntu 18.04. Each of the ROS nodes can be developed
and tested independently in ROS and the dataflow is managed using the publisher/subscriber model. To connect
to the Tello drone, the "Flock driver" is used. The flight data e.g. the battery state, pose (pitch, roll, yaw, x y z),
flight mode, equipment status and temperature.

3.0.1 Obstacle Avoidance

Obstacle Avoidance is trained using Deep Reinforcement Learning[Anwar & Raychowdhury, 2019] using a
Sim-to-Real approach. The PEDRA simulator is used to train the drone using the DQN algorithm. Our work
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builds upon [Li, 2020] which showed that a drone trained in the PEDRA simulator yielded much better results
than a drone trained in the Gazebo simulator. This was due to the realistic visual features available in PEDRA
environments.

The field of view of the drone’s camera is divided into n£n windows. Each of these windows corresponds
to an action in the action space. The drone implements the next action by selecting the action’s pitch and yaw
and moves forward 0.5m to the next state. A uniform noise is added to the pitch and yaw angles to make these
actions probabilistic instead of deterministic. This results in a maximum possible distance of 0.2m from the
target position to the actual position. The reward for taking an action from the current state is based upon the
depth estimation in that direction. The drone, therefore, chooses the action which takes it towards the window,
in its field of view, for which there is the greatest estimated depth in the environment. For the real-world system
the action space is reduced 3 actions: advance by 0.5m, rotate clockwise by 45 degrees, and rotate clockwise
by 45 degrees. The action space does not include any altitude adjustments.

The deep reinforcement algorithm DQN is used to train the drone to detect obstacles and navigate around
them. The mission of the drone is to fly as far as possible in the environment without crashing. The drone learns
the state-action pairs and converges to a policy that maximises the expected cumulative reward. The velocity
is set to zero after each step to allow the drone time to observe the state. The agent gets a positive reward for
navigating to a state with no obstacles in front of it and a negative reward for getting too close to an obstacle or
crashing. All of the layers of the deep neural network are trained in the simulator the last two layers are then
trained in the real world while all the other layers are frozen. This fine-tuning helps to adapt the network to the
real-world environment.

3.1 SLAM

The ORB-SLAM2 algorithm [Mur-Artal & Tardos, 2017] is chosen as ORB feature extraction and matching
mean that accurate mapping can be performed in real-time on standard CPUs achieving state-of-the-art accuracy
across the KITTI, EuRoC and TUM benchmarks. ORB-SLAM2 is implemented using the Tello_ROS_ORB-
SLAM framework [Autonomous Drones Lab, 2019]. To provide a real-world scale to the ORB-SLAM2 algo-
rithm, the drone must perform a calibration at the start of each flight. Upon take-off and successful initialisation
of the SLAM, the drone is instructed to fly vertically up a distance of 0.5m metres and down again. The readings
from the Tello’s internal altimeter are sampled and the height published by the SLAM algorithm.

3.2 People Detection

YOLOv3 was chosen for people detection as it achieves the best speed-accuracy balance on the MS COCO
dataset with a mAP of 57.9% in 51ms. The YOLO implementation for ROS by ETH Zurich was used
[at ETH Zürich, 2018]. YOLOv3 was configured by adjusting the confidence threshold to 80%. The detec-
tion classes were limited to objects that could be present in the DARPA SubT Challenge such as "person",
"backpack" and "cell phone". When an object is detected in the current frame, its location is then imposed as a
marker on the 2D point cloud map. The object must be reported with an accuracy of 5 metres. When the object
is detected in front of the drone it is first predicted to be positioned next to the identified features in the current
frame. This prediction is updated as the drone moves closer to the object.

4 Performance Evaluation

4.1 Obstacle Avoidance Performance

The DQN model is trained end-to-end for 150,000 iterations, making up ª5000 episodes in the virtual envi-
ronment of the PEDRA simulator. The safe flight distance is calculated as the distance the drone can travel in
the environment without crashing. The last 2 layers of the model are trained for 20 episodes in a real-world
indoor environment using the Tello drone. Following the training, the drone is tested in both the simulator
and in the real world. The mean safe flight (MSF) distance is calculated over 20 flights in each environment.
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After training the drone achieves an MSF distance of 45.3 m in the simulator. After fine-tuning these weights
with the Tello in the real world, the MSF distance achieved is only 15.7m. On approximately 80% of all of
these real-world trials, the trial is terminated because the drone’s battery is depleted and the drone is forced
to land. It could be expected that the drone would perform worse in the real-world environment as there are
several other factors such as noise and different lighting conditions which may upset the model’s calculations.
The impediments introduced by the very short battery life make it difficult to evaluate the drone’s real-world
autonomous navigation performance fully.

4.2 SLAM Accuracy

To assess the accuracy of the scaled SLAM map, the SLAM estimation of trajectory travelled is compared
to the ground truth. The Absolute Trajectory Error (ATE) RMSE is the metric calculated for trails along 10
different routes. The RMSE is the Root Mean Square Error. For each route, the drone starts at a different point
within the indoor environment. Some of these routes contain loops in which the drone is expected to perform
loop closure. The average ATE RMSE accuracy was 0.36m±0.12.

4.3 Object Detection Accuracy

The drone is tasked with detecting a person and accurately marking the position on the generated map in real-
time. For this experiment, there are 3 routes. The drone travels each route 20 times with the person positioned
in a different location along the route each time. A successful detection occurs when the system places a marker
in real-time on the generated map at the person’s position to within 5 metres to count as a successful detection.
An average detection rate of 85% was achieved over 20 trials.

5 Discussion

5.1 Computational Load

It was very computationally expensive to perform obstacle avoidance as the system uses two deep neural net-
works, one for creating a depth map from the RGB image and one for the DQN algorithm. Furthermore,
obstacle avoidance was run parallel with SLAM and object detection. A possible solution to this would be
to assign each of the ROS nodes processes to different CPUs to allow them all to run in parallel in real-time.
There is no functionality within ROS to support this but [Wei et al., 2016] presents a ROS architecture that
allows different ROS nodes to be run on different processor cores also tools such as "taskset" for Linux allows
the user to pin tasks to CPUs.

5.2 SLAM Accuracy

The most accurate result is achieved on Route 6, with an ATE RMSE value of 0.11m while the least accurate
result is achieved on Route 4 with an ATE RMSE value of 0.53m. The accuracy from both these results is
good enough to enable the system to detect an object of interest within 5m subsequently. Over long flights,
however, if loop closure is not detected, this inaccuracy becomes worse. These results are poorer than the
original ORB-SLAM paper with a monocular camera [Mur-Artal et al., 2015] which reports an ATE RMSE on
the TUM RGB-D dataset ranging from 0.0124m to 0.0345m. This discrepancy is largely because the real-world
scale is known, whereas it has to be calculated by our drone. Moreover, conditions such as blur, missed frames
and strong rotation also occur on the test routes. Monocular SLAM algorithms including ORB-SLAM, do not
perform well under pure rotations of the camera. During many of the tests, the SLAM algorithm loses track of
the features and the mapping fails. On some blank walls, there is a lack of features for ORB-SLAM2 to track.
In this case, the object detection evaluation test has to be restarted. To prevent this from occurring, a black
and white checkerboard pattern, printed on A4 paper, is stuck on different walls to create a more feature-rich
environment.
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5.3 Object Detection Accuracy

For each of the three routes in the indoor environment, the experiment begins after SLAM initialises and the
real-world scale has been calibrated. Route 2 has the highest rate of successful object detection with the person
being detected in 95% of the tests. This is likely due to slightly better lighting along this route and the person
being in positions relative to the drone that were easier to detect. A successful detection is only counted when
the person’s position is estimated to be within 5 metres of the person’s actual position. This accuracy is one
of the requirements in the SubT Challenge. Over a longer flight duration, however, the scale drift becomes
more of an issue and would cause the person’s position to be less accurate. Flights with long duration were not
assessed because of limited battery life.

5.4 Limitations of the System

Further improvements needed for the system to be successful in SubT type challenges and are examined from
the point of view of the technological goals of the SubT Challenge: mobility, autonomy, perception, and net-
working. The flight time of the Tello is 13 minutes. Moreover, about 40 seconds are taken up by calibration
after take-off. The drone rises an extra 0.5m from its take-off height of 1m to perform calibration. It is worth
also noting that the drone would be taking off from its mounted position on top of the ground-based robot.
These time and height constraints severely impact the drone’s mobility. Our system is currently not fully au-
tonomous and requires the user to watch the drone’s performance closely and the difficulties encountered with
the computational load prevented full autonomous testing. ORB-SLAM2 with the Tello’s monocular camera
provides sufficient accuracy for the SubT Challenge, it is evident from the experiments that the algorithm fails
often, in terms of initialisation and feature tracking. In the SubT Challenge, the drone may get only one chance
to launch and perform its mission. Relying on a single low-cost sensor for perception limits the robustness of
the system. Finally, the Tello only uses the 2.4GHz band WiFi with a 100m range. In practice, the range is
considerably less, especially when the line of sight is not maintained. The Tello, could not travel far out of the
line of sight of the ground-based robot without an improved networking solution.

6 Conclusion

This research aimed to develop and evaluate a SAR system using a low-cost drone with a monocular camera in
GPS-denied environments. The drone would act as an auxiliary robot for a ground-based robot in the DARPA
Subterranean Challenge. The drone system that was developed completes the mapping and victim detection
tasks to sufficient accuracy for the SubT Challenge. The drone was successfully trained for autonomous naviga-
tion and obstacle avoidance with a simulation-to-real approach using an optimised deep reinforcement learning.
The fully autonomous performance could not be assessed due to battery life limitations and the computational
load of running all the processes on the laptop.

The benefits of using a monocular camera and an IMU to operate in GPS-denied environments are low
weight and power consumption. Light-weight drones are more agile and enable longer flight times. The
challenges of scale ambiguity, scale drift and robustness were also recognised when performing SLAM with
a monocular camera. The results from the experiments showed that the SLAM mapping was accurate to
0.36m±0.12, this accuracy was sufficient for enabling the subsequent task of people detection, but that this
error could accumulate over longer flights. The difficulties encountered during experiments, associated with
SLAM initialisation and tracking, demonstrated the lack of robustness of the SLAM algorithm with a monoc-
ular camera. The ORB-SLAM2 would achieve better performance with either a stereo or RGB-D camera and
provide depth measurement for obstacle avoidance.

The object detection algorithm, YOLOv3, performed very well. The mean detection rate of the victim in
the environment across the trials was 85%. This demonstrates that the algorithm’s balance between speed and
accuracy makes it a good choice for this real-time application. It is clear why many of the teams currently
taking part in the DARPA Subterranean Challenge use this object detection algorithm.
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The are many exciting improvements that can be made to the system and several tests to consider in the
areas of mobility, autonomy, perception and networking. Building hardware and software systems is an iterative
process. The future work for this project should be undertaken with careful consideration of the complete multi-
robot SAR system with a holistic view of how the drone operates within an overall multi-robot system.
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Comparing the automatic evaluation of CPR compression 
rates using a smartwatch vs a smartphone. 
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Abstract 

This paper presents a novel algorithm for automatically evaluating the compression rate for 
Cardio Pulmonary Resuscitation (CPR) from the sensor data from a smartwatch.  The results are 
compared with manually derived ground truth and with the results of an automatic system based on 
the analysis of video from a smartphone. 

 
Keywords: Image Processing, CPR, Motion Analysis  

1 Introduction  

For Out of Hospital Cardiac Arrest (OHCA), the likelihood of survival is quite slim. A 2017 
study looking at 28 European countries showed an average survival rate of 8% [Gräsner, et al., 
2020] and the percentage of cases where a bystander performed CPR ranged from 13% to 82%.  
The application of CPR early after the onset of cardiac arrest is crucial. The percentage of 
patients who survive 1 month after experiencing cardiac arrest is 2.2% in cases where no CPR 
is performed, but increases when CPR is performed by a layperson (4.9%) or a healthcare 
professional (9.2%) [Herlitz et al., 2005]. 

The use of real-time feedback during training substantially increases the quality of CPR 
being performed [Baldi et al., 2017]. There are several existing solutions for providing 
feedback on CPR quality during training but these are typically expensive and as a result 
inaccessible to most organisations.  The focus of the research here is the provision of feedback 
using commonly available technologies (such as smartphones and smartwatches). If a 
smartwatch or smart phone can provide reliable feedback to a rescuer performing CPR, whether 
in training or also in OHCA, it could result in increased survival rates.  
 

2 State of the Art 

Arguably the most important aspects of CPR are the Chest 
Compression Rate (CCR) which should be 100-120 
compressions per minute and the Chest Compression Depth 
(CCD) which should be 5- 6cm. Many defibrillators are 
capable of measuring the CCR and CCD but as these will 
not, at least initially, be available other technologies have 
been investigated.  The CCR can be computed reliably from 
a smartphone camera facing the person performing CPR 
[Corkery and Dawson-Howe, 2019] (See Figure 1) or using 
a view looking upwards at the person applying CPR 
[Meinich-Bache  et al., 2017], where the smart-phone is 
lying flat on the ground.  Other work has demonstrated the 
use of smartphone accelerometers (which also exist in smart 

Figure 1: Analysis of CPR 
using optical flow [Corkery & 
Dawson-Howe, 2019] 
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watches) to evaluate the CCD [Song et al., 2015] with a resulting inaccuracy of only ~3mm.  
Ahn et al. have also demonstrated the use of smartwatches for providing feedback for externally 
calculated CCR & CCD [Ahn et al., 2017]. 

3 Detecting compressions using a smartwatch 

The watch used in this project was an LG G Watch W100 which provides information on 
acceleration (including the force of gravity) as well as the force of gravity itself, rotational 
information and magnetic orientation information.  The sensors yielded acceleration 
information in 3 axes: X, Y and Z. If the watch is worn on the outside of the left arm, the 
positive X-axis points from the elbow to the fingertips, the positive Y-axis points across from 
the thumb to the little finger and the positive Z-axis points directly outwards from the watch 
face.  For the detection of compressions the principle axis is along the arm wearing the watch 
of the person giving the compressions which corresponds to the X axis.  Typically that arm 
will be almost vertical as the compressions are done downwards.  The forces recorded in the Y 
and Z axes are primarily caused by the watch shaking on the rescuer’s wrist. As such, the only 
axis that provides reliable, consistent data was the X axis. 

The raw data from the smartwatch is very noisy and therefore a mean smoothing filter 
was applied. This smoothing filter was experimentally chosen to cover a range of 200ms 
centred around the observation being considered.  This removed the vast majority of spurious 
peaks (which were relatively high frequency) and troughs, without damaging the compression 
data (which was around 2Hz).  

Compressions result in sharp peaks and troughs in the X axis acceleration data.  We 
designate the trough as the compression although any point on this regular cycle could be 
chosen.  The method used to locate the peaks and troughs involved taking each data point and 
determining if it was the lowest or highest point within the previous 125ms and the next 125ms. 
This range allows for smaller local minima and maxima to be ignored.  Examples are shown in 
Figure 2. 

 

 
Figure 2: Filtered acceleration data from the X axis of the watch from the clapping at the start of the 
recording (left) followed by 6 compressions (right).  The peak deceleration points are all possible 
compression locations but the invalid have been rejected due to movement on other axes, incorrect 
orientation of the watch or by an insufficient change between the highest and lowest points. 

 
Having found the peaks and troughs we label each valley as a compression if: 

1. The trough follows a peak and is followed by another peak where the absolute 
differences in acceleration between both peaks and the trough are at least 1 m/s2. 
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2. The force in the X-axis is at least 70% of the total magnitude of the force of gravity 
which allows for a maximum deviation of approximately 45 degrees from vertical.  This 
ensures that the arm of the person is more-or-less vertical. 

3. At least 30% of the movement was in the X direction (i.e. there was limited movement 
orthogonal to the movement of the arm). 

 The generous allowance of deviation from vertical tolerates cases where the watch may 
be pressing on the rescuer’s wrist or the rescuer’s arms may not be positioned completely 
vertically, both of which result in the orientation of the watch deviating slightly from vertical. 

4 Results  

Five separate recordings of a person administering CPR to a dummy were made where each 
recording comprised both video (from the camera phone) and sensor data (from the 
smartwatch).  Overall in these videos 440 compressions were recorded.  The ground truth was 
created by manually stepping through each frame of the video and marking the frames that 
were the top or bottom of a compression. Note that the video assessment of compressions was 
performed using the techniques described by Corkery and Dawson-Howe [Corkery and 
Dawson-Howe, 2019]. 

In order to be able to assess the compressions detected from smartwatch sensor data it 
was necessary to first align the sensor data and the ground truth.  This was achieved by 
requiring the rescuer to clap their hands three times at the start and end of each recording. This 
clapping was clearly visible in both the recorded video and in the data from the smartwatch, 
which were then manually aligned using unfiltered X axis acceleration data.  

The results of evaluating the output of the two approaches and comparing them to the 
ground truth can be seen in Table 1. This shows a very high level of overall accuracy for both 
algorithms although the computer vision based algorithm resulted in more misidentified 
compressions than the smartwatch based algorithm. 
 
 TP FP FN Precision Recall Accuracy 
Smartwatch (this paper) 438 0 2 1.00 0.99 0.99 
Video [Corkery and Dawson-Howe, 2019] 440 12 0 0.97 1.00 0.97 

Table 1: This table shows the compressions correctly detected (TP), missed (FN), and incorrectly detected 
(FP) by both algorithms summarised across all 5 test videos.  Precision = TP/(TP+FP), Recall = 
TP/(TP+FN), Accuracy = TP/(TP+FP+FN) 
 
 The detected compressions are used to compute the CCR and the difference in the CCR 
for the Smartwatch and the Video measurements as compared to the Ground Truth are shown 
in Figure 3. 

5 Conclusions 
 Overall analysis of the smartwatch data provided CCR data which was as good as, if not 
better than, that obtained from video analysis using smartphone video.  It appears that a 
smartwatch can be used to detect CCR and CCD to high precision, while a smartphone can 
detect CCR to high precision.  It is unclear if a smartphone can be used to reliably measure the 
CCD as there are issues converting pixel measurements to physical distances. 
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Figure 3: The difference in frames between the calculated CCR for both algorithms and the ground truth 
as a fraction of all calculated CCRs. CCR calculated using 4 compressions. 
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Abstract

In this work, we propose a method to aid the 2-D segmentation of short-axis cardiac MRI. In particular, the
deformation fields obtained during the registration are used to propagate the labels to all time frames, resulting
in a weakly supervised segmentation approach that benefits from the features in unlabelled volumes along with the
annotated data. Experimental results over the M&Ms datasets show that the addition of the synthetically obtained
labels to the original dataset yields promising results in the performance and improves the capability of the network
to generalise to scanners from different vendors.

Keywords: Cardiac MRI, Image Segmentation, Semi-Supervised Learning, Image Registration, Medical Imaging.

1 Introduction

Cardiac image segmentation is an important first step for many approaches to quantitative analysis for cardiac diagnostic
assessment. This process requires partitioning the image into a number of clinically meaningful regions such as left
ventricle (LV), right ventricle (RV), or myocardium (MYO). Acquiring this information allows clinicians understand
important features such as the ejection fraction and the volume that the heart is managing at different times. Those
features are later used to determine if there is any possible pathology and how bad it is [Kawel-Boehm et al., 2015].

Data is a key challenge when trying to use off-the-shelf algorithms in this area, specifically the limited amount of
annotated data available, but also its quality. Many researchers report struggling to achieve improved results with existing
annotated data, especially when working with open datasets [Chen et al., 2020]. Difficulties range from low availability
of data, to domain shift using data from a certain scanner vendors, to images from patients with rare conditions.

There is growing interest in the community in understanding how to transfer models that work well for specific
scanners to unseen ones. In this work we address these challenges using the M&Ms challenge dataset, which we
believe to be the representative dataset for this issue [Campello et al., 2020].

Convolutional neural networks (CNN) are the most common type of deep neural networks for image analysis and
have advanced the state-of-the-art in many object segmentation tasks, including in the medical imaging domain. In
particular, U-Net [Ronneberger et al., 2015] is the architecture with the best results over most of the challenges that
the cardiac MRI currently faces [Chen et al., 2020]. Hence, we have selected it to run our experiments.

Recently, [Zhang et al., 2021] proposed a method where labels can be propagated using image registration in an
unsupervised manner and those labels are used to enhance the process where a 3D U-Net learns features. Even though
results ranked second in the M&Ms challenge [Campello et al., 2020], the study did not test those propositions in 2D
networks, a key novelty of our work, nor explored different tools for the registration part.

Contributions: this work proposes a method to enhance the segmentation of short-axis cardiac MRI by synthetically
labelling volumes without annotations. The proposed system works by registering the labelled volumes of the end-
systolic (ES) and the end-diastolic (ED) time-frames and using the warping field over their ground truth. This helps the
network to learn robust features from those volumes, which are important towards increasing the performance over differ-
ent scanners. Our study extends recent works where the propagation of labels is used in a 3D U-Net and using a different
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registration tool. In contrast to that work, we investigate whether this technique is valid for 2D U-Net applications that
can be used in less computationally powerful machines and expect to have better performances in anisotropic datasets.

2 Related Work

The clinical interest in ventricle segmentation has pushed the community towards improving the performance for this
task. With the advent of deep learning, a succession of different approaches were investigated. One of the first, was the
usage of a fully convolutional network [Tran, 2016]. From there, many works have improved the networks, increasing
the learning capacity for segmentation [Khened et al., 2019]. In that regard, the low through-plane resolution and the
motion artifacts limited the applicability of 3D networks [Baumgartner et al., 2017].

Annotated data is the foundation of fully supervised approaches but at the same time it is scarce and costly to
obtain. Moreover, annotating medical images requires significant expertise and manual effort and even then can lead to
noisy labels and/or biases. Additionally, there is an imbalance between the amount of available data regarding different
source scanner, target pathology, or scanning parameters. All the above-mentioned challenges point strongly towards
the need to design methods where the accuracy of the networks is maintained compared to fully supervised approach,
even when there is significantly less data available.

A number of works in the literature proposed unsupervised or semi-supervised techniques to overcome the scarcity
of labels. One approach was to use a scribble annotation, that consists of a set of quickly drawn labels, and recursively
re-training the network using the output segmentation, including a conditional random field and an uncertainty estimator
[Can et al., 2018]. The advances in the calculation of optical flow inspired the usage of these algorithms for motion
estimation and this has been useful in multi-task approaches where a Siamese network performs the motion estimation
and the segmentation simultaneously, exploiting the information contained in unlabelled data [Qin et al., 2018].

Voxelmorph [Balakrishnan et al., 2018] is an image registration tool for alignment and registration that can also
model deformations. It has been used for atlas based registration [Dalca et al., 2019] and for probabilistic diffeomorphic
registration [Dalca et al., 2018]. Given its proven reliability, we use it for the registration part of our study.

3 Method and Experiment

This section describes the proposed method, detailing the different steps and implementations of all the tools involved
in the process. Distinguishing two first steps corresponding to the registration and label propagation, and two last parts
corresponding to training and testing the two different models i.e. the original dataset and the one with the addition
of the synthetic labels.

3.1 Data

For our experiments we used the M&Ms dataset, released during the Multi-Centre, Multi-Vendor and Multi-Disease
Cardiac Image Segmentation Challenge. This dataset consists of 345 patients with hypertrophic and dilated cardiomy-
opathies and healthy subjects and it also permits the opportunity to measure performance over different scanners, and
to evaluate the resilience of our approach towards different data sources. In particular the training set includes 150
cases (75 from vendor A and 75 from vendor B). The test set includes cases from two more vendors (C and D).

The CMR images have been segmented by experienced clinicians from the respective host institutions, including
contours for the LV and RV blood pools, as well as for the left ventricular MYO.

3.2 Label Propagation

Our selected image registration technique was Voxelmorph [Balakrishnan et al., 2019], and given that the pre-trained
models were trained with images from other tissues, we decided to train our own with our available data. We also
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included the ground truth segmentation labels in the training process to produce a model that later we used for label
propagation. For this part of the process we used the standard configuration of Voxelmorph (Tensorflow version)1.

After training the model we computed all the warping fields for the time-frame between ED and ES, always in an
intra-subject way. With the warping fields we modified the ground truth for the ED time-frame, obtaining the synthetic
labels for out target time-frames.

Lastly, we join in a single dataset all the volumes with annotations, including the the original and the synthetic.

3.3 Segmentation

In our approach, we used a 2D U-Net to segment the end-diastolic and end-systolic volumes in the target dataset.
In particular, our U-Net model used 32 feature channels with kernel size equal to three in the first level of the
convolutional layers, where batch normalization was also applied and the activation function was ReLU, followed
by a 2£2 max-pooling layer. The final 1£1 convolution is set with four channels that match the four target regions:
background, right ventricle, left ventricle, and myocardium.

To train the model, we used an Adam optimizer (learning rate = 10°3) with a plateau learning rate scheduler, and
as a loss function we calculated the cross-entropy loss. In addition to this, we computed the Dice score for all the
regions in each epoch for the validation set.

4 Results

Table 1 shows the results obtained for both datasets, including regions and vendors (M&Ms). The proposed method
performs 2.6% better than the baseline, where the region that benefits the most from this change is the corresponding
to the myocardium. When we compare the difference in the performance of both models in the different scanners,
we see how the performance of unseen scanners C and D improves in the model resulting from the proposed method
while it sees its performance almost untouched for the scanners present in the training set (A and B).

Regions Vendors Total

LV Myo RV A B C D Dice

Baseline (M&Ms) 0.475 0.386 0.394 0.553 0.583 0.419 0.277 0.418
Proposed (M&Ms) 0.504 0.430 0.398 0.548 0.573 0.443 0.338 0.444

Table 1: Results (dice scores) on the M&Ms datasets. Higher is better.

5 Conclusions

Experimental results using synthetic labels generated from VoxelMorph showed an improvement over the base-
line, demonstrating the potential for using diffeomorphic image registration as a label propagation technique. Fu-
ture work will investigate using this technique with a stronger baseline. In particular, we plan to adopt nnUNet
[Isensee et al., 2021], an automatic segmentation framework for medical images based on the U-net architectures,
which has been demonstrated to give state-of-the-art results. Finally, we believe the results can be improved by
leveraging research on unreliable or noisy labels (e.g. [Arazo et al., 2019]), weighting them differently to reflect the
level of trust in the annotations, or post-processing the synthetic annotations. Future work will investigate this.
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Strictly Ballroom - Analysing Dance Skills
with Temporal Segment Networks

He Liu, Gerard Lacey
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Abstract

Ballroom Dancing contains fast complex motions that require significant training and are difficult to
analyse and score. Automating the analysis of complex physical skills is useful for sports coaching, med-
ical skills training and rehabilitation. Our paper explores the use of Siamese Temporal Segment Network
(TSN) and salient region identification using BlazePose to rank ballroom dancers automatically. The sys-
tem produces a Spearman Rank correlation with dancer experience of 96%. Our experiments indicate that
salient snippet identification using Blazepose had a modest impact on the results. The limitations of our
system are the small dataset and the need to manually tune motion segmentation thresholds based on the NP
Smoothness metric.

Keywords: Video Action Recognition, Physical Skill Ranking, Temporal Segment Networks

1 Introduction

Figure 1: Expert vs Amateur dancer from
[Tada & Naemura, 2006]

This paper describes a real-time whole-body physical skills
analysis evaluation system using video. The analysis of com-
plex human motion patterns is difficult and has applications in
skills training, entertainment and rehabilitation. Wearable mo-
tion sensors are often used to capture physical movement and
vary from specialised wearable to mobile phone-based sensors.
Camera-based motion-sensing varies from a professional grade
for movies and games requiring specialised suits, to games con-
sole and mobile phone cameras that use motion as an input to
applications. These applications range from motion-triggered
games such as Just Dance to fitness and sports technique train-
ing. In competitive domains such as Dance, Gymnastics and
Platform Diving the coordination and control of posture is key.
As can be seen in Figure 1, the difference in the body pose is
easy to detect. When the body is in motion these differences can
be less obvious.

2 State of the Art

We examine issues related to the analysis of dance skills, Deep Learning approaches to motion analysis specifi-
cally the Siamese network and its extension Temporal Siamese Networks (TSN) for action recognition. Finally,
we look at pairwise ranking to allow a comparison of skill levels between the action videos.
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2.1 Complex motion analysis

Many researchers such as [Tada & Naemura, 2006] analyzed dance using the auto-correlation and mutual-
correlation functions with the beat-to-beat interval of music, but they ignored the postural aspects of the dance.
Wearable optical motion capture devices have been used[Chan et al., 2010] and were adequate to compare
captured motions with templates in the database. The relationship between music rhythm and dance movements
was also examined. In[Kishore et al., 2018] a convolutional neural network (CNN) to extract and recognize
dance movements from video. A 3D neural network combined with support vector regression [Parmar &
Tran Morris, 2017] was used to training to score Olympic Diving, Vault and figure skating. In [Nekoui et al.,
2020] pose tracking was combined with an appearance-based approach to score Olympic diving.

2.2 Siamese networks for action recognition

One challenge of complex action recognition is that very large data sets that show the ideal actions are rarely
available. The Siamese network, first proposed in [Bromley et al., 1993], allows us to compare if two images
are similar and give is the distance between them. The network composed of two identical sub-networks
with shared weights and outputs are compared in a loss layer. The original Siamese network was applied to
fingerprint and face recognition.

The Siamese network can solve ranking problems as it takes two data sources and generates distance mea-
sures between the samples. For a video ranking problem, the Siamese network learns to rank videos from
experts and novices and uses a video from the user as evaluation data. The Siamese network can output the
semantic similarity which can be used as a proxy for skill level.

Temporal Segment Networks (TSN)[Wang et al., 2016] provided an improved framework for human action
recognition based on Two-Stream Convolutional Neural Networks (2S-CNN). It uses two convolutional net-
works, one each for temporal and spatial video features. The outputs are then fused to generate the score for
the action. The TSN sparsely samples the video by first splitting the video into K segments and then randomly
sampling snippets of video from each segment. A consensus is achieved across the K spatial and temporal
segments prior to being combined to determine the score. To further improve the results a data augmentation
strategy of corner cropping and scale jittering was used.

2.3 Pairwise Deep Ranking

Pairwise Ranking is a statistical tool to give priorities to multiple options. [Doughty et al., 2018] combined this
concept with deep learning architecture as Pairwise Deep Ranking to rank skills in video recording. For any
two videos doing the same task, they aim to determine which one is better, and across a set of videos which one
is the best. The deep representation of skills from the videos are first obtained with TSN, then the skill levels
differences are labelled for any video pairs. Finally, the weights of TSN are updated with the labelled video
pairs data through Siamese Network. They proposed a novel ranking loss function that considers both pairwise
ranking and pairwise similarities and achieved from 70.2% to 83.2% precision on tasks as diverse as surgery,
dough-rolling, drawing and chopstick-use.

3 Methodology

Figure 2: Tracking Result

Our system uses the TSN architecture followed by a pairwise ranking from
[Doughty et al., 2018]. In that work pairs of videos were divided into three seg-
ments of equal length. The videos had a constant rate of task progression but
in ballroom dancing the dancer sometimes moves rapidly and at other times is
relatively still. Our aim was to investigate if splitting the videos based on these
motion patterns would have an impact on the results.
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3.1 Motion Analysis using Blazepose

For our study we used the Ballroom Dance Dataset (BDD) [Matsuyama et al., 2019] consists of 7 dancers, each
dancer performs the same rumba dance steps 20 times. We use the dancer’s years of experience as a proxy for
relative skill level. The distribution of years of experience is: 17, 5, 5, 4, 3, 1, 1.

There are no annotations for the dance steps within BDD so we used Blazepose [Bazarevsky et al., 2020] to
track dancer’s limbs and the NP Smoothness metric [Balasubramanian et al., 2015] to split videos when there
was a change of direction by the dancer. The NP smoothness was calculated by tracking the forearms and shins
of the dancer. When NP smoothness fell below a threshold the video segments were marked with “break” as
in Figure 2. This approach over-segmented the video into separate “dance movements”. The dance movement
segments were then manually merged to create the “dance steps” of the rumba. We evaluated the impact of
splitting videos using both the fully automatic dance movement method and manual dance step method.

3.2 The TSN and pairwise ranking architecture

Figure 3: Video Split for Evaluation

The TSN consisted of two independent networks, a 2S-
CNN Spatial Network and a 2S-CNN Temporal Network
as shown in Figure 3. Each video is divided into N seg-
ments based on the 3 strategies: Equal length, Dance Steps
and Dance Movements. From each segment three ran-
domly selected RGB and optical flow images are fed to
the Spatial and Temporal networks respectively. The opti-
cal flow images are created from a sequence of 5 images
and produce a dense estimate of optical flow.

The three input images to Spatial and Temporal net-
works produce three estimates for the skill score for each
segment. These are combined to produce a consensus
score represented by Score S(patial) and Score T(emporal).
These scores are then combined using a weighted sum: Fu-
sion = a*spatial+(1-a)*temporal. Finally, the skill score for
the entire video is determined by summing across all the
segments.

4 Results

Ballroom Dance Dataset (BDD) consists of 7 dancers, each dancer performs the same rumba dance steps 20
times. The model was trained with the batch size 128, momentum 0.9 and dropout 0.5. The data was split 80%
training and 20% test. The training was stopped after 980 iterations. The system was tested with Intel i7 4790k
and NVIDIA GTX 1060. The average calculation time for one video split is 6.4168s.

We calculated Spearman’s rank correlation on the test data to measures the strength and direction of as-
sociation between ranked videos. The greater the value the higher the correlation between the prediction and
ground truth. The results are presented in Table 1

5 Conclusions

The segmentation of the BDD videos into discrete dance steps produced better results when we consider the
spatial only model or the temporal only model. However, the results of equal segmentation using a fusion
model with 60% Spatial and 40% Temporal produce the best results. The results obtained are relatively high
and this may be due to the lack of diversity in the data and a relatively small dataset. In addition we have used
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Table 1: Correlation results for the different video split methods

Spearman Rank Correlation
Model Score Method Equal Splits Dance Steps Dance Movements
Spatial Only 0.943 0.954 0.942
Temporal Only 0.810 0.834 0.805
Fusion: 60% spatial + 40% temporal 0.968 0.952 0.947

years of experience as a proxy for skill level and there was a good spread of experience level leading to clear
separation between most skill levels.
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Abstract

Neural knowledge transfer methods aim to constrain the hidden representation of one neural network
to be similar, or have similar properties, to another by applying specially designed loss functions between
the two networks hidden layers. In this way the intangible knowledge encoded by the network’s weights is
transferred without having to replicate exact weight structures or alter the knowledge representation from
its natural highly distributed form. Motivated by the need to enable greater transparency in evaluating such
methods by bridging the gap between different experimental setups in the existing literature, the need to cast
a wider net in comparing each method to a greater number of its peers and a desire to explore novel combina-
tions of existing methods we conduct an experimental comparison of eight contemporary neural knowledge
transfer algorithms and further explore the performance of some combinations. We conduct our experiments
on an image classification task and measure relative performance gains over non-knowledge enhanced base-
line neural networks in terms of classification accuracy. We observed (i) some interesting contradictions be-
tween our results and those reported in original papers, (ii) a general lack of correlation between any given
methods standalone performance vs performance when used in combination with knowledge distillation,
(iii) a general trend of older simpler methods outperforming newer ones and (iv) Contrastive Representation
Distillation (CRD) achieving best performance.

Keywords: Knowledge Transfer, Knowledge Distillation, Deep Learning, Representation Learning, Ma-
chine Learning

1 Introduction

Modern deep neural networks solve difficult tasks by learning incredibly complex decision functions from raw
training data and appropriate reward signals such as labels. The fields of artificial intelligence, machine learning
and computer vision have benefited hugely from rapid advances in the theory of neural learning in recent years
[LeCun et al., 2015]. However, as neural approaches begin to achieve a level of maturity and widespread adop-
tion, attention has increasingly shifted from focusing on how best to exploit their well-established strengths
to identifying and addressing their inherent and more fundamental limitations [Lake et al., 2017]. Parallels
have been drawn between the somewhat opposing strengths and weaknesses of deep neural networks and “old-
school” symbolic AI systems [Sun, 1999] – a key attribute of which is the re-use of sophisticated bodies of
knowledge, albeit knowledge represented in a vastly different format. The knowledge learned by a deep neural
network is encoded across a network of thousands to millions of neurons arranged in sequential layers, of-
ten hundreds deep. Individual neurons and their learned weights, the concrete entities which underpin such
knowledge, are uninterpretable and of no utility when considered in isolation of the wider network structure.
Therefore the knowledge contained within a neural network is an abstract function encoded in a distributed
format across the entirety of the network’s weights. In this sense the knowledge we seek to reuse is intangible
and the existing knowledge transfer and reuse methodologies of the symbolic AI domain are not readily appli-
cable in the deep learning domain. However, the lessons learned from knowledge representation in symbolic
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AI along with the envisioned benefits it could bring to neural learning [Lake et al., 2017], has meant that the
question remains – how do we emulate these knowledge transfer and reuse capabilities in the vastly different
neural learning paradigm? Distillation based neural knowledge transfer approaches seek to do this by augment-
ing a neural networks learning process with inputs derived from another neural network (a teacher) where it
is believed the teachers weights contain knowledge beneficial to the student network on a chosen task. This
involves constraining the student networks’ hidden representation to have similar properties to the teachers,
thereby transferring knowledge from teacher to student in an abstract manner. This is achieved by applying
specially designed loss functions between transformed representations of activations collected from hidden
layers across both teacher and student networks for the same sample of data. By encouraging the student to
represent individual pieces of data in a similar way to the teacher, the student’s weights are also encouraged to
encode a function similar (or with similar properties) to the teachers while appreciating that the student cannot
replicate exact weight structures. In this paper we will contrast the performance of eight such contemporary
neural knowledge transfer methods on a computer vision task. Comparisons such as this one are necessary
to bridge the gap between the sometimes vastly different experimental setups that appear alongside original
publications and to cast a wider net in comparing each method to a greater number of its contemporary peers.
The comparison is intended to enable greater transparency and more reliable conclusions in establishing the
state-of-the-art. Further to this, as an exploratory component, we will examine the combination of the Knowl-
edge Distillation (KD) method [Hinton et al., 2015] with each of the other seven methods, some of these being
previously unexplored combinations.

2 Experimental Comparison

2.1 Models & Data

We use ResNet models [He et al., 2016] in our experimental setup as they are one of the few widely known mod-
els that are viable for use with all of the methods examined here. Our teacher, the ResNet-56, is 2.7 times deeper
and has 3.1 times as many parameters as the ResNet-20 we use as student; thus it has a much greater represen-
tational capacity and the ability to encode a much more powerful decision function. In selecting the parameters
for methods reproduced here, we endeavoured to stay as close as possible to those reported in the original pa-
pers. However, many of the original papers do not report essential training parameters. In these cases we make
choices based on (i) achieving functional gradient descent (ii) achieving parameter consistency across methods
(where possible) and (iii) maximising classification accuracy on the validation dataset. We use the CIFAR-10
and CIFAR-100 image classification datasets [Krizhevsky, 2009] in this experimental evaluation. All details
necessary for reproduction of these experiments including data loading parameters and exact training parame-
ters for all models trained are available on the GitHub page at github.com/squinn95/KD_IMVIP_21.

2.2 Discussion of Results

The results of our experimental comparison are shown in Table 1. We also report the performance of a non-
knowledge enhanced baseline student network as a benchmark with which to measure relative performance
gains. We observe that KD [Hinton et al., 2015] performs strongly in the evaluation, showing best performance
on CIFAR-10 and second best on CIFAR-100, this is broadly in line with the strong results reported for KD
in the papers which reproduce it [Passalis and Tefas, 2018, Huang and Wang, 2017, Tian et al., 2020]. In our
paper it outperforms all methods except CRD. The original FitNet evaluation does not report a baseline student
figure [Romero et al., 2014], so we cannot contrast relative performance gains, it does however report that the
method outperforms its teacher despite the student being a much lower capacity model. We did not observe
performance this strong in our evaluation for FitNet or for any of the other methods or combination meth-
ods. Despite this we observed stronger gains over the baseline for FitNet than expected, as it is reproduced
in several other papers [Yim et al., 2017, Passalis and Tefas, 2018, Huang and Wang, 2017]. The original FSP
evaluation [Yim et al., 2017] compares with only one other method, FitNet, which it is shown to outperform.
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Table 1: Top-1 classification accuracy (%) on the CIFAR datasets [Krizhevsky, 2009] – knowledge transfer
from ResNet56 to ResNet20 [He et al., 2016]. Relative improvement over baseline student shown in brackets.

Model CIFAR-10 CIFAR-100
Teacher 93.68 72.46

Baseline Student 91.74 68.3

KD [Hinton et al., 2015] 92.66 (+0.92) 69.78 (+1.48)

FitNet [Romero et al., 2014] 92.22 (+0.48) 69.26 (+0.96)

FSP [Yim et al., 2017] 92.18 (+0.44) 68.76 (+0.46)

PKT [Passalis and Tefas, 2018] 91.88 (+0.14) 69.26 (+0.96)

MMD-Linear [Huang and Wang, 2017] 91.86 (+0.12) 68.9 (+0.6)

MMD-Polynomial [Huang and Wang, 2017] 92.06 (+0.32) 68.46 (+0.16)

MMD-Gaussian [Huang and Wang, 2017] 92.62 (+0.88) 69.38 (+1.08)

CRD [Tian et al., 2020] 91.88 (+0.14) 70.66 (+2.36)

FitNet+KD 92.36 (+0.62) 69.98 (+1.68)

FSP+KD 92.34 (+0.6) 70.42 (+2.12)

PKT+KD 92.56 (+0.82) 69.88 (+1.58)

MMD-Linear+KD 92.04 (+0.3) 69.32 (+1.02)

MMD-Polynomial+KD 92.52 (+0.78) 69.9 (+1.6)

MMD-Gaussian+KD 92.76 (+1.02) 69.08 (+0.78)

CRD+KD 92.96 (+1.22) 70.9 (+2.6)

We observed the opposite result, with FitNet achieving marginally higher performance on CIFAR-10 and signif-
icantly higher performance on CIFAR-100. We examined the previously unexplored combination of FSP+KD
which achieved surprisingly good performance, second best overall on CIFAR-100, it is noteworthy that FSP
seems to offer much more when combined with KD than as a standalone method. The original PKT evaluation
[Passalis and Tefas, 2018] reports the methods outperforming FitNet and KD in a content-based retrieval exper-
imental setup, we observe the opposite in our classification setup, with both methods outperforming PKT. The
original MMD paper [Huang and Wang, 2017] reports MMD-Polynomial as the strongest performing of the
three MMD kernel variants where in our experiments we observe MMD-Gaussian to be the stronger. Due to this
finding the authors did not include results for the combinations MMD-Linear+KD and MMD-Gaussian+KD.
While we did find MMD-Polynomial+KD to be the stronger combination on CIFAR-100, MMD-Gaussian+KD
prevailed on CIFAR-10, making the extra combinations a worthwhile inclusion in our analysis. They further
report MMD-Polynomial as surpassing both FitNet and KD on CIFAR-10 and FitNet on CIFAR-100 where
we observe MMD-Gaussian surpassing FitNet only on both datasets and do not observe either of the other
two kernel variants outperforming KD or FitNet. We see near identical performance for the CRD method
on CIFAR-100 in our evaluation and the original paper [Tian et al., 2020], confirming it as the strongest per-
forming method among those examined. Curiously it did not perform as strongly when used without KD on
CIFAR-10, but held a clear advantage over other methods in the other three scenarios examined.

3 Conclusion

We find all methods examined improved performance over a non-knowledge enhanced baseline on both the
CIFAR-10 and CIFAR-100 datasets. We achieved results roughly in line with expectations for three of the
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methods examined (KD, MMD-Linear, CRD), weaker performance in three methods (MMD-Polynomial, PKT,
FSP) and slightly stronger than expected performance in two methods (MMD-Gaussian and FitNet). We sus-
pect that these some of these disparities may be due to a tendency for evaluation setups to be slightly biased
towards the method they report. We found little correlation between the performance of methods when eval-
uated standalone vs when combined with KD – one does not offer any reliable insight into the other. This is
illustrated by the fact that two of the three new knowledge transfer scenarios explored here (FSP+KD, MMD-
Gaussian+KD) achieved surprisingly strong results. From this we conclude that there is value in exploring
method combinations even when their constituent parts do not appear especially promising. We observed a
general trend of older simpler methods (KD, FitNet) outperforming some more recent methods (FSP, PKT,
MMD) in contradiction to the initial evaluations which accompanied these newer methods. Finally, we confirm
CRD to be the best performing standalone method and CRD+KD to be the overall strongest knowledge transfer
regime.
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